All Rewrite Rules: Difference between revisions
imported>Laurent mNo edit summary |
imported>Laurent Moved links for edition before each table. |
||
Line 1: | Line 1: | ||
This page groups together all the rewrite rules implemented (or planned for implementation) in the Rodin prover. The rules themselves can be found in | This page groups together all the rewrite rules implemented (or planned for implementation) in the Rodin prover. The rules themselves can be found in their respective location (for editing purposes): | ||
Conventions used in these tables are described in [[The_Proving_Perspective_%28Rodin_User_Manual%29#Rewrite_rules]] | Conventions used in these tables are described in [[The_Proving_Perspective_%28Rodin_User_Manual%29#Rewrite_rules]] | ||
==[[Set Rewrite Rules]]== | |||
{{:Set Rewrite Rules}} | {{:Set Rewrite Rules}} | ||
==[[Relation Rewrite Rules]]== | |||
{{:Relation Rewrite Rules}} | {{:Relation Rewrite Rules}} | ||
==[[Arithmetic Rewrite Rules]]== | |||
{{:Arithmetic Rewrite Rules}} | {{:Arithmetic Rewrite Rules}} |
Revision as of 13:45, 8 January 2010
This page groups together all the rewrite rules implemented (or planned for implementation) in the Rodin prover. The rules themselves can be found in their respective location (for editing purposes):
Conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_rules
Set Rewrite Rules
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_SPECIAL_AND_BTRUE |
![]() |
A | |
* | SIMP_SPECIAL_AND_BFALSE |
![]() |
A | |
* | SIMP_MULTI_AND |
![]() |
A | |
* | SIMP_MULTI_AND_NOT |
![]() |
A | |
* | SIMP_SPECIAL_OR_BTRUE |
![]() |
A | |
* | SIMP_SPECIAL_OR_BFALSE |
![]() |
A | |
* | SIMP_MULTI_OR |
![]() |
A | |
* | SIMP_MULTI_OR_NOT |
![]() |
A | |
* | SIMP_SPECIAL_IMP_BTRUE_R |
![]() |
A | |
* | SIMP_SPECIAL_IMP_BTRUE_L |
![]() |
A | |
* | SIMP_SPECIAL_IMP_BFALSE_R |
![]() |
A | |
* | SIMP_SPECIAL_IMP_BFALSE_L |
![]() |
A | |
* | SIMP_MULTI_IMP |
![]() |
A | |
* | SIMP_MULTI_IMP_NOT_L |
![]() |
A | |
* | SIMP_MULTI_IMP_NOT_R |
![]() |
A | |
* | SIMP_MULTI_IMP_AND |
![]() |
A | |
* | SIMP_MULTI_IMP_AND_NOT_R |
![]() |
A | |
* | SIMP_MULTI_IMP_AND_NOT_L |
![]() |
A | |
* | SIMP_MULTI_EQV |
![]() |
A | |
* | SIMP_MULTI_EQV_NOT |
![]() |
A | |
* | SIMP_SPECIAL_NOT_BTRUE |
![]() |
A | |
* | SIMP_SPECIAL_NOT_BFALSE |
![]() |
A | |
* | SIMP_NOT_NOT |
![]() |
AM | |
* | SIMP_NOTEQUAL |
![]() |
A | |
* | SIMP_NOTIN |
![]() |
A | |
* | SIMP_NOTSUBSET |
![]() |
A | |
* | SIMP_NOTSUBSETEQ |
![]() |
A | |
* | SIMP_NOT_LE |
![]() |
A | |
* | SIMP_NOT_GE |
![]() |
A | |
* | SIMP_NOT_LT |
![]() |
A | |
* | SIMP_NOT_GT |
![]() |
A | |
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_R |
![]() |
A | |
* | SIMP_SPECIAL_NOT_EQUAL_FALSE_L |
![]() |
A | |
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_R |
![]() |
A | |
* | SIMP_SPECIAL_NOT_EQUAL_TRUE_L |
![]() |
A | |
* | SIMP_FORALL_AND |
![]() |
A | |
* | SIMP_EXISTS_OR |
![]() |
A | |
* | SIMP_EXISTS_IMP |
![]() |
A | |
* | SIMP_FORALL |
![]() |
Quantified identifiers other than ![]() ![]() |
A |
* | SIMP_EXISTS |
![]() |
Quantified identifiers other than ![]() ![]() |
A |
* | SIMP_MULTI_EQUAL |
![]() |
A | |
* | SIMP_MULTI_NOTEQUAL |
![]() |
A | |
* | SIMP_EQUAL_MAPSTO |
![]() |
A | |
* | SIMP_EQUAL_SING |
![]() |
A | |
* | SIMP_SPECIAL_EQUAL_TRUE |
![]() |
A | |
* | SIMP_TYPE_SUBSETEQ |
![]() |
where ![]() |
A |
* | SIMP_SUBSETEQ_SING |
![]() |
where ![]() |
A |
* | SIMP_SPECIAL_SUBSETEQ |
![]() |
A | |
* | SIMP_MULTI_SUBSETEQ |
![]() |
A | |
* | SIMP_SUBSETEQ_BUNION |
![]() |
A | |
* | SIMP_SUBSETEQ_BINTER |
![]() |
A | |
* | DERIV_SUBSETEQ_BUNION |
![]() |
A | |
* | DERIV_SUBSETEQ_BINTER |
![]() |
A | |
* | SIMP_SPECIAL_IN |
![]() |
A | |
* | SIMP_MULTI_IN |
![]() |
A | |
* | SIMP_IN_SING |
![]() |
A | |
* | SIMP_MULTI_SETENUM |
![]() |
A | |
* | SIMP_SPECIAL_BINTER |
![]() |
A | |
* | SIMP_TYPE_BINTER |
![]() |
where ![]() |
A |
* | SIMP_MULTI_BINTER |
![]() |
A | |
* | SIMP_MULTI_EQUAL_BINTER |
![]() |
A | |
* | SIMP_SPECIAL_BUNION |
![]() |
A | |
* | SIMP_TYPE_BUNION |
![]() |
where ![]() |
A |
* | SIMP_MULTI_BUNION |
![]() |
A | |
* | SIMP_MULTI_EQUAL_BUNION |
![]() |
A | |
* | SIMP_MULTI_SETMINUS |
![]() |
A | |
* | SIMP_SPECIAL_SETMINUS_R |
![]() |
A | |
* | SIMP_SPECIAL_SETMINUS_L |
![]() |
A | |
* | SIMP_TYPE_SETMINUS |
![]() |
where ![]() |
A |
* | SIMP_TYPE_SETMINUS_SETMINUS |
![]() |
where ![]() |
A |
* | SIMP_KUNION_POW |
![]() |
A | |
* | SIMP_KUNION_POW1 |
![]() |
A | |
* | SIMP_SPECIAL_KUNION |
![]() |
A | |
* | SIMP_SPECIAL_QUNION |
![]() |
A | |
* | SIMP_SPECIAL_KINTER |
![]() |
A | |
* | SIMP_KINTER_POW |
![]() |
A | |
* | SIMP_SPECIAL_POW |
![]() |
A | |
* | SIMP_SPECIAL_POW1 |
![]() |
A | |
* | SIMP_SPECIAL_CPROD_R |
![]() |
A | |
* | SIMP_SPECIAL_CPROD_L |
![]() |
A | |
SIMP_COMPSET_EQUAL |
![]() |
where ![]() ![]() ![]() |
A | |
* | SIMP_COMPSET_IN |
![]() |
where ![]() ![]() |
A |
* | SIMP_COMPSET_SUBSETEQ |
![]() |
where ![]() ![]() |
A |
* | SIMP_SPECIAL_COMPSET_BFALSE |
![]() |
A | |
* | SIMP_SPECIAL_COMPSET_BTRUE |
![]() |
where the type of ![]() ![]() ![]() |
A |
* | SIMP_SUBSETEQ_COMPSET_L |
![]() |
where ![]() |
A |
* | SIMP_IN_COMPSET |
![]() |
where ![]() ![]() ![]() ![]() |
A |
* | SIMP_IN_COMPSET_ONEPOINT |
![]() |
Equivalent to general simplification followed by One Point Rule application with the last conjunct predicate | A |
SIMP_SUBSETEQ_COMPSET_R |
![]() |
where ![]() ![]() |
M | |
* | SIMP_SPECIAL_OVERL |
![]() |
A | |
* | SIMP_SPECIAL_KBOOL_BTRUE |
![]() |
A | |
* | SIMP_SPECIAL_KBOOL_BFALSE |
![]() |
A | |
DISTRI_SUBSETEQ_BUNION_SING |
![]() |
where ![]() |
M | |
* | DEF_FINITE |
![]() |
M | |
* | SIMP_SPECIAL_FINITE |
![]() |
A | |
* | SIMP_FINITE_SETENUM |
![]() |
A | |
* | SIMP_FINITE_BUNION |
![]() |
A | |
* | SIMP_FINITE_POW |
![]() |
A | |
* | DERIV_FINITE_CPROD |
![]() |
A | |
* | SIMP_FINITE_CONVERSE |
![]() |
A | |
* | SIMP_FINITE_UPTO |
![]() |
A | |
* | SIMP_FINITE_ID |
![]() |
where ![]() ![]() |
A |
* | SIMP_FINITE_ID_DOMRES |
![]() |
A | |
* | SIMP_FINITE_PRJ1 |
![]() |
where ![]() ![]() |
A |
* | SIMP_FINITE_PRJ2 |
![]() |
where ![]() ![]() |
A |
* | SIMP_FINITE_PRJ1_DOMRES |
![]() |
A | |
* | SIMP_FINITE_PRJ2_DOMRES |
![]() |
A | |
* | SIMP_FINITE_NATURAL |
![]() |
A | |
* | SIMP_FINITE_NATURAL1 |
![]() |
A | |
* | SIMP_FINITE_INTEGER |
![]() |
A | |
* | SIMP_FINITE_BOOL |
![]() |
A | |
* | SIMP_FINITE_LAMBDA |
![]() |
where ![]() ![]() ![]() ![]() |
A |
* | SIMP_TYPE_IN |
![]() |
where ![]() |
A |
* | SIMP_SPECIAL_EQV_BTRUE |
![]() |
A | |
* | SIMP_SPECIAL_EQV_BFALSE |
![]() |
A | |
* | DEF_SUBSET |
![]() |
A | |
* | SIMP_SPECIAL_SUBSET_R |
![]() |
A | |
* | SIMP_SPECIAL_SUBSET_L |
![]() |
A | |
* | SIMP_TYPE_SUBSET_L |
![]() |
where ![]() |
A |
* | SIMP_MULTI_SUBSET |
![]() |
A | |
* | SIMP_EQUAL_CONSTR |
![]() |
where ![]() |
A |
* | SIMP_EQUAL_CONSTR_DIFF |
![]() |
where ![]() ![]() |
A |
* | SIMP_DESTR_CONSTR |
![]() |
where ![]() ![]() |
A |
* | DISTRI_AND_OR |
![]() |
M | |
* | DISTRI_OR_AND |
![]() |
M | |
* | DEF_OR |
![]() |
M | |
* | DERIV_IMP |
![]() |
M | |
* | DERIV_IMP_IMP |
![]() |
M | |
* | DISTRI_IMP_AND |
![]() |
M | |
* | DISTRI_IMP_OR |
![]() |
M | |
* | DEF_EQV |
![]() |
M | |
* | DISTRI_NOT_AND |
![]() |
M | |
* | DISTRI_NOT_OR |
![]() |
M | |
* | DERIV_NOT_IMP |
![]() |
M | |
* | DERIV_NOT_FORALL |
![]() |
M | |
* | DERIV_NOT_EXISTS |
![]() |
M | |
* | DEF_IN_MAPSTO |
![]() |
AM | |
* | DEF_IN_POW |
![]() |
M | |
* | DEF_IN_POW1 |
![]() |
M | |
* | DEF_SUBSETEQ |
![]() |
where ![]() ![]() ![]() |
M |
* | DEF_IN_BUNION |
![]() |
M | |
* | DEF_IN_BINTER |
![]() |
M | |
* | DEF_IN_SETMINUS |
![]() |
M | |
* | DEF_IN_SETENUM |
![]() |
M | |
* | DEF_IN_KUNION |
![]() |
where ![]() |
M |
* | DEF_IN_QUNION |
![]() |
where ![]() |
M |
* | DEF_IN_KINTER |
![]() |
where ![]() |
M |
* | DEF_IN_QINTER |
![]() |
where ![]() |
M |
* | DEF_IN_UPTO |
![]() |
M | |
* | DISTRI_BUNION_BINTER |
![]() |
M | |
* | DISTRI_BINTER_BUNION |
![]() |
M | |
DISTRI_BINTER_SETMINUS |
![]() |
M | ||
DISTRI_SETMINUS_BUNION |
![]() |
M | ||
* | DERIV_TYPE_SETMINUS_BINTER |
![]() |
where ![]() |
M |
* | DERIV_TYPE_SETMINUS_BUNION |
![]() |
where ![]() |
M |
* | DERIV_TYPE_SETMINUS_SETMINUS |
![]() |
where ![]() |
M |
DISTRI_CPROD_BINTER |
![]() |
M | ||
DISTRI_CPROD_BUNION |
![]() |
M | ||
DISTRI_CPROD_SETMINUS |
![]() |
M | ||
* | DERIV_SUBSETEQ |
![]() |
where ![]() ![]() ![]() |
M |
* | DERIV_EQUAL |
![]() |
where ![]() ![]() ![]() |
M |
* | DERIV_SUBSETEQ_SETMINUS_L |
![]() |
M | |
* | DERIV_SUBSETEQ_SETMINUS_R |
![]() |
M | |
* | DEF_PARTITION |
![]() |
AM | |
* | SIMP_EMPTY_PARTITION |
![]() |
A | |
* | SIMP_SINGLE_PARTITION |
![]() |
A | |
* | DEF_EQUAL_CARD |
![]() |
also works for ![]() |
M |
* | SIMP_EQUAL_CARD |
![]() |
M |
Relation Rewrite Rules
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_DOM_SETENUM |
![]() |
A | |
* | SIMP_DOM_CONVERSE |
![]() |
A | |
* | SIMP_RAN_SETENUM |
![]() |
A | |
* | SIMP_RAN_CONVERSE |
![]() |
A | |
* | SIMP_SPECIAL_OVERL |
![]() |
A | |
* | SIMP_MULTI_OVERL |
![]() |
there is a ![]() ![]() ![]() ![]() |
A |
* | SIMP_TYPE_OVERL_CPROD |
![]() |
where ![]() |
A |
* | SIMP_SPECIAL_DOMRES_L |
![]() |
A | |
* | SIMP_SPECIAL_DOMRES_R |
![]() |
A | |
* | SIMP_TYPE_DOMRES |
![]() |
where ![]() |
A |
* | SIMP_MULTI_DOMRES_DOM |
![]() |
A | |
* | SIMP_MULTI_DOMRES_RAN |
![]() |
A | |
* | SIMP_DOMRES_DOMRES_ID |
![]() |
A | |
* | SIMP_DOMRES_DOMSUB_ID |
![]() |
A | |
* | SIMP_SPECIAL_RANRES_R |
![]() |
A | |
* | SIMP_SPECIAL_RANRES_L |
![]() |
A | |
* | SIMP_TYPE_RANRES |
![]() |
where ![]() |
A |
* | SIMP_MULTI_RANRES_RAN |
![]() |
A | |
* | SIMP_MULTI_RANRES_DOM |
![]() |
A | |
* | SIMP_RANRES_ID |
![]() |
A | |
* | SIMP_RANSUB_ID |
![]() |
A | |
* | SIMP_RANRES_DOMRES_ID |
![]() |
A | |
* | SIMP_RANRES_DOMSUB_ID |
![]() |
A | |
* | SIMP_SPECIAL_DOMSUB_L |
![]() |
A | |
* | SIMP_SPECIAL_DOMSUB_R |
![]() |
A | |
* | SIMP_TYPE_DOMSUB |
![]() |
where ![]() |
A |
* | SIMP_MULTI_DOMSUB_DOM |
![]() |
A | |
* | SIMP_MULTI_DOMSUB_RAN |
![]() |
A | |
* | SIMP_DOMSUB_DOMRES_ID |
![]() |
A | |
* | SIMP_DOMSUB_DOMSUB_ID |
![]() |
A | |
* | SIMP_SPECIAL_RANSUB_R |
![]() |
A | |
* | SIMP_SPECIAL_RANSUB_L |
![]() |
A | |
* | SIMP_TYPE_RANSUB |
![]() |
where ![]() |
A |
* | SIMP_MULTI_RANSUB_DOM |
![]() |
A | |
* | SIMP_MULTI_RANSUB_RAN |
![]() |
A | |
* | SIMP_RANSUB_DOMRES_ID |
![]() |
A | |
* | SIMP_RANSUB_DOMSUB_ID |
![]() |
A | |
* | SIMP_SPECIAL_FCOMP |
![]() |
A | |
* | SIMP_TYPE_FCOMP_ID |
![]() |
A | |
* | SIMP_TYPE_FCOMP_R |
![]() |
where ![]() ![]() |
A |
* | SIMP_TYPE_FCOMP_L |
![]() |
where ![]() ![]() |
A |
* | SIMP_FCOMP_ID |
![]() |
A | |
* | SIMP_SPECIAL_BCOMP |
![]() |
A | |
* | SIMP_TYPE_BCOMP_ID |
![]() |
A | |
* | SIMP_TYPE_BCOMP_L |
![]() |
where ![]() ![]() |
A |
* | SIMP_TYPE_BCOMP_R |
![]() |
where ![]() ![]() |
A |
* | SIMP_BCOMP_ID |
![]() |
A | |
* | SIMP_SPECIAL_DPROD_R |
![]() |
A | |
* | SIMP_SPECIAL_DPROD_L |
![]() |
A | |
* | SIMP_DPROD_CPROD |
![]() |
A | |
* | SIMP_SPECIAL_PPROD_R |
![]() |
A | |
* | SIMP_SPECIAL_PPROD_L |
![]() |
A | |
* | SIMP_PPROD_CPROD |
![]() |
A | |
* | SIMP_SPECIAL_RELIMAGE_R |
![]() |
A | |
* | SIMP_SPECIAL_RELIMAGE_L |
![]() |
A | |
* | SIMP_TYPE_RELIMAGE |
![]() |
where ![]() |
A |
* | SIMP_MULTI_RELIMAGE_DOM |
![]() |
A | |
* | SIMP_RELIMAGE_ID |
![]() |
A | |
* | SIMP_RELIMAGE_DOMRES_ID |
![]() |
A | |
* | SIMP_RELIMAGE_DOMSUB_ID |
![]() |
A | |
* | SIMP_MULTI_RELIMAGE_CPROD_SING |
![]() |
where ![]() |
A |
* | SIMP_MULTI_RELIMAGE_SING_MAPSTO |
![]() |
where ![]() |
A |
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB |
![]() |
A | |
* | SIMP_MULTI_RELIMAGE_CONVERSE_RANRES |
![]() |
A | |
* | SIMP_RELIMAGE_CONVERSE_DOMSUB |
![]() |
A | |
DERIV_RELIMAGE_RANSUB |
![]() |
M | ||
DERIV_RELIMAGE_RANRES |
![]() |
M | ||
* | SIMP_MULTI_RELIMAGE_DOMSUB |
![]() |
A | |
DERIV_RELIMAGE_DOMSUB |
![]() |
M | ||
DERIV_RELIMAGE_DOMRES |
![]() |
M | ||
* | SIMP_SPECIAL_CONVERSE |
![]() |
A | |
* | SIMP_CONVERSE_ID |
![]() |
A | |
* | SIMP_CONVERSE_CPROD |
![]() |
A | |
* | SIMP_CONVERSE_SETENUM |
![]() |
A | |
* | SIMP_CONVERSE_COMPSET |
![]() |
A | |
* | SIMP_DOM_ID |
![]() |
where ![]() ![]() |
A |
* | SIMP_RAN_ID |
![]() |
where ![]() ![]() |
A |
* | SIMP_FCOMP_ID_L |
![]() |
A | |
* | SIMP_FCOMP_ID_R |
![]() |
A | |
* | SIMP_SPECIAL_REL_R |
![]() |
idem for operators ![]() |
A |
* | SIMP_SPECIAL_REL_L |
![]() |
idem for operators ![]() |
A |
* | SIMP_FUNIMAGE_PRJ1 |
![]() |
A | |
* | SIMP_FUNIMAGE_PRJ2 |
![]() |
A | |
* | SIMP_DOM_PRJ1 |
![]() |
where ![]() ![]() |
A |
* | SIMP_DOM_PRJ2 |
![]() |
where ![]() ![]() |
A |
* | SIMP_RAN_PRJ1 |
![]() |
where ![]() ![]() |
A |
* | SIMP_RAN_PRJ2 |
![]() |
where ![]() ![]() |
A |
* | SIMP_FUNIMAGE_LAMBDA |
![]() |
A | |
* | SIMP_DOM_LAMBDA |
![]() |
A | |
* | SIMP_RAN_LAMBDA |
![]() |
A | |
* | SIMP_IN_FUNIMAGE |
![]() |
A | |
* | SIMP_IN_FUNIMAGE_CONVERSE_L |
![]() |
A | |
* | SIMP_IN_FUNIMAGE_CONVERSE_R |
![]() |
A | |
* | SIMP_MULTI_FUNIMAGE_SETENUM_LL |
![]() |
A | |
* | SIMP_MULTI_FUNIMAGE_SETENUM_LR |
![]() |
A | |
* | SIMP_MULTI_FUNIMAGE_OVERL_SETENUM |
![]() |
A | |
* | SIMP_MULTI_FUNIMAGE_BUNION_SETENUM |
![]() |
A | |
* | SIMP_FUNIMAGE_CPROD |
![]() |
A | |
* | SIMP_FUNIMAGE_ID |
![]() |
A | |
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE |
![]() |
A | |
* | SIMP_FUNIMAGE_CONVERSE_FUNIMAGE |
![]() |
A | |
* | SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM |
![]() |
A | |
* | SIMP_FUNIMAGE_DOMRES |
![]() |
with hypothesis![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
AM |
* | SIMP_FUNIMAGE_DOMSUB |
![]() |
with hypothesis![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
AM |
* | SIMP_FUNIMAGE_RANRES |
![]() |
with hypothesis![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
AM |
* | SIMP_FUNIMAGE_RANSUB |
![]() |
with hypothesis![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
AM |
* | SIMP_FUNIMAGE_SETMINUS |
![]() |
with hypothesis![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
AM |
* | DEF_EQUAL_FUNIMAGE |
![]() |
M | |
* | DEF_BCOMP |
![]() |
M | |
DERIV_ID_SING |
![]() |
where ![]() |
M | |
* | SIMP_SPECIAL_DOM |
![]() |
A | |
* | SIMP_SPECIAL_RAN |
![]() |
A | |
* | SIMP_CONVERSE_CONVERSE |
![]() |
A | |
* | DERIV_RELIMAGE_FCOMP |
![]() |
M | |
* | DERIV_FCOMP_DOMRES |
![]() |
M | |
* | DERIV_FCOMP_DOMSUB |
![]() |
M | |
* | DERIV_FCOMP_RANRES |
![]() |
M | |
* | DERIV_FCOMP_RANSUB |
![]() |
M | |
DERIV_FCOMP_SING |
![]() |
A | ||
* | SIMP_SPECIAL_EQUAL_RELDOMRAN |
![]() |
idem for operators ![]() |
A |
* | SIMP_TYPE_DOM |
![]() |
where ![]() ![]() |
A |
* | SIMP_TYPE_RAN |
![]() |
where ![]() ![]() |
A |
* | SIMP_MULTI_DOM_CPROD |
![]() |
A | |
* | SIMP_MULTI_RAN_CPROD |
![]() |
A | |
* | SIMP_MULTI_DOM_DOMRES |
![]() |
A | |
* | SIMP_MULTI_DOM_DOMSUB |
![]() |
A | |
* | SIMP_MULTI_RAN_RANRES |
![]() |
A | |
* | SIMP_MULTI_RAN_RANSUB |
![]() |
A | |
* | DEF_IN_DOM |
![]() |
M | |
* | DEF_IN_RAN |
![]() |
M | |
* | DEF_IN_CONVERSE |
![]() |
M | |
* | DEF_IN_DOMRES |
![]() |
M | |
* | DEF_IN_RANRES |
![]() |
M | |
* | DEF_IN_DOMSUB |
![]() |
M | |
* | DEF_IN_RANSUB |
![]() |
M | |
* | DEF_IN_RELIMAGE |
![]() |
M | |
* | DEF_IN_FCOMP |
![]() |
M | |
* | DEF_OVERL |
![]() |
M | |
* | DEF_IN_ID |
![]() |
M | |
* | DEF_IN_DPROD |
![]() |
M | |
* | DEF_IN_PPROD |
![]() |
M | |
* | DEF_IN_REL |
![]() |
M | |
* | DEF_IN_RELDOM |
![]() |
M | |
* | DEF_IN_RELRAN |
![]() |
M | |
* | DEF_IN_RELDOMRAN |
![]() |
M | |
* | DEF_IN_FCT |
![]() |
M | |
* | DEF_IN_TFCT |
![]() |
M | |
* | DEF_IN_INJ |
![]() |
M | |
* | DEF_IN_TINJ |
![]() |
M | |
* | DEF_IN_SURJ |
![]() |
M | |
* | DEF_IN_TSURJ |
![]() |
M | |
* | DEF_IN_BIJ |
![]() |
M | |
DISTRI_BCOMP_BUNION |
![]() |
M | ||
* | DISTRI_FCOMP_BUNION_R |
![]() |
M | |
* | DISTRI_FCOMP_BUNION_L |
![]() |
M | |
DISTRI_DPROD_BUNION |
![]() |
M | ||
DISTRI_DPROD_BINTER |
![]() |
M | ||
DISTRI_DPROD_SETMINUS |
![]() |
M | ||
DISTRI_DPROD_OVERL |
![]() |
M | ||
DISTRI_PPROD_BUNION |
![]() |
M | ||
DISTRI_PPROD_BINTER |
![]() |
M | ||
DISTRI_PPROD_SETMINUS |
![]() |
M | ||
DISTRI_PPROD_OVERL |
![]() |
M | ||
DISTRI_OVERL_BUNION_L |
![]() |
M | ||
DISTRI_OVERL_BINTER_L |
![]() |
M | ||
* | DISTRI_DOMRES_BUNION_R |
![]() |
M | |
* | DISTRI_DOMRES_BUNION_L |
![]() |
M | |
* | DISTRI_DOMRES_BINTER_R |
![]() |
M | |
* | DISTRI_DOMRES_BINTER_L |
![]() |
M | |
DISTRI_DOMRES_SETMINUS_R |
![]() |
M | ||
DISTRI_DOMRES_SETMINUS_L |
![]() |
M | ||
DISTRI_DOMRES_DPROD |
![]() |
M | ||
DISTRI_DOMRES_OVERL |
![]() |
M | ||
* | DISTRI_DOMSUB_BUNION_R |
![]() |
M | |
* | DISTRI_DOMSUB_BUNION_L |
![]() |
M | |
* | DISTRI_DOMSUB_BINTER_R |
![]() |
M | |
* | DISTRI_DOMSUB_BINTER_L |
![]() |
M | |
DISTRI_DOMSUB_DPROD |
![]() |
M | ||
DISTRI_DOMSUB_OVERL |
![]() |
M | ||
* | DISTRI_RANRES_BUNION_R |
![]() |
M | |
* | DISTRI_RANRES_BUNION_L |
![]() |
M | |
* | DISTRI_RANRES_BINTER_R |
![]() |
M | |
* | DISTRI_RANRES_BINTER_L |
![]() |
M | |
DISTRI_RANRES_SETMINUS_R |
![]() |
M | ||
DISTRI_RANRES_SETMINUS_L |
![]() |
M | ||
* | DISTRI_RANSUB_BUNION_R |
![]() |
M | |
* | DISTRI_RANSUB_BUNION_L |
![]() |
M | |
* | DISTRI_RANSUB_BINTER_R |
![]() |
M | |
* | DISTRI_RANSUB_BINTER_L |
![]() |
M | |
* | DISTRI_CONVERSE_BUNION |
![]() |
M | |
DISTRI_CONVERSE_BINTER |
![]() |
M | ||
DISTRI_CONVERSE_SETMINUS |
![]() |
M | ||
DISTRI_CONVERSE_BCOMP |
![]() |
M | ||
DISTRI_CONVERSE_FCOMP |
![]() |
M | ||
DISTRI_CONVERSE_PPROD |
![]() |
M | ||
DISTRI_CONVERSE_DOMRES |
![]() |
M | ||
DISTRI_CONVERSE_DOMSUB |
![]() |
M | ||
DISTRI_CONVERSE_RANRES |
![]() |
M | ||
DISTRI_CONVERSE_RANSUB |
![]() |
M | ||
* | DISTRI_DOM_BUNION |
![]() |
M | |
* | DISTRI_RAN_BUNION |
![]() |
M | |
* | DISTRI_RELIMAGE_BUNION_R |
![]() |
M | |
* | DISTRI_RELIMAGE_BUNION_L |
![]() |
M | |
* | DERIV_DOM_TOTALREL |
![]() |
with hypothesis ![]() ![]() ![]() |
M |
DERIV_RAN_SURJREL |
![]() |
with hypothesis ![]() ![]() ![]() |
M | |
* | DERIV_PRJ1_SURJ |
![]() |
where ![]() ![]() ![]() ![]() |
A |
* | DERIV_PRJ2_SURJ |
![]() |
where ![]() ![]() ![]() ![]() |
A |
* | DERIV_ID_BIJ |
![]() |
where ![]() ![]() |
A |
* | SIMP_MAPSTO_PRJ1_PRJ2 |
![]() |
A | |
DERIV_EXPAND_PRJS |
![]() |
M | ||
* | SIMP_DOM_SUCC |
![]() |
A | |
* | SIMP_RAN_SUCC |
![]() |
A | |
* | DERIV_MULTI_IN_BUNION |
![]() |
A | |
* | DERIV_MULTI_IN_SETMINUS |
![]() |
A | |
* | DEF_PRED |
![]() |
A | |
* | SIMP_SPECIAL_IN_ID |
![]() |
A | |
* | SIMP_SPECIAL_IN_SETMINUS_ID |
![]() |
A | |
* | SIMP_SPECIAL_IN_DOMRES_ID |
![]() |
A | |
* | SIMP_SPECIAL_IN_SETMINUS_DOMRES_ID |
![]() |
A |
Arithmetic Rewrite Rules
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_SPECIAL_MOD_0 |
![]() |
A | |
* | SIMP_SPECIAL_MOD_1 |
![]() |
A | |
* | SIMP_MIN_SING |
![]() |
where ![]() |
A |
* | SIMP_MAX_SING |
![]() |
where ![]() |
A |
* | SIMP_MIN_NATURAL |
![]() |
A | |
* | SIMP_MIN_NATURAL1 |
![]() |
A | |
* | SIMP_MIN_BUNION_SING |
![]() |
A | |
* | SIMP_MAX_BUNION_SING |
![]() |
A | |
* | SIMP_MIN_UPTO |
![]() |
A | |
* | SIMP_MAX_UPTO |
![]() |
A | |
* | SIMP_MIN_IN |
![]() |
A | |
* | SIMP_MAX_IN |
![]() |
A | |
* | SIMP_LIT_MIN |
![]() |
where ![]() ![]() ![]() |
A |
* | SIMP_LIT_MAX |
![]() |
where ![]() ![]() ![]() |
A |
* | SIMP_SPECIAL_CARD |
![]() |
A | |
* | SIMP_CARD_SING |
![]() |
where ![]() |
A |
* | SIMP_SPECIAL_EQUAL_CARD |
![]() |
A | |
* | SIMP_CARD_POW |
![]() |
A | |
* | SIMP_CARD_BUNION |
![]() |
A | |
SIMP_CARD_SETMINUS |
![]() |
with hypotheses ![]() ![]() ![]() |
A | |
SIMP_CARD_SETMINUS_SETENUM |
![]() |
with hypotheses ![]() ![]() |
A | |
* | SIMP_CARD_CONVERSE |
![]() |
A | |
* | SIMP_CARD_ID |
![]() |
where ![]() ![]() |
A |
* | SIMP_CARD_ID_DOMRES |
![]() |
A | |
* | SIMP_CARD_PRJ1 |
![]() |
where ![]() ![]() |
A |
* | SIMP_CARD_PRJ2 |
![]() |
where ![]() ![]() |
A |
* | SIMP_CARD_PRJ1_DOMRES |
![]() |
A | |
* | SIMP_CARD_PRJ2_DOMRES |
![]() |
A | |
* | SIMP_CARD_LAMBDA |
![]() |
where ![]() ![]() ![]() ![]() |
A |
* | SIMP_LIT_CARD_UPTO |
![]() |
where ![]() ![]() ![]() |
A |
SIMP_TYPE_CARD |
![]() |
where ![]() ![]() |
A | |
* | SIMP_LIT_GE_CARD_1 |
![]() |
A | |
* | SIMP_LIT_LE_CARD_1 |
![]() |
A | |
* | SIMP_LIT_LE_CARD_0 |
![]() |
A | |
* | SIMP_LIT_GE_CARD_0 |
![]() |
A | |
* | SIMP_LIT_GT_CARD_0 |
![]() |
A | |
* | SIMP_LIT_LT_CARD_0 |
![]() |
A | |
* | SIMP_LIT_EQUAL_CARD_1 |
![]() |
A | |
* | SIMP_CARD_NATURAL |
![]() |
A | |
* | SIMP_CARD_NATURAL1 |
![]() |
A | |
* | SIMP_LIT_IN_NATURAL |
![]() |
where ![]() |
A |
* | SIMP_SPECIAL_IN_NATURAL1 |
![]() |
A | |
* | SIMP_LIT_IN_NATURAL1 |
![]() |
where ![]() |
A |
* | SIMP_LIT_UPTO |
![]() |
where ![]() ![]() ![]() |
A |
* | SIMP_LIT_IN_MINUS_NATURAL |
![]() |
where ![]() |
A |
* | SIMP_LIT_IN_MINUS_NATURAL1 |
![]() |
where ![]() |
A |
* | DEF_IN_NATURAL |
![]() |
M | |
* | DEF_IN_NATURAL1 |
![]() |
M | |
* | SIMP_LIT_EQUAL_KBOOL_TRUE |
![]() |
A | |
* | SIMP_LIT_EQUAL_KBOOL_FALSE |
![]() |
A | |
* | SIMP_KBOOL_LIT_EQUAL_TRUE |
![]() |
A | |
* | DEF_EQUAL_MIN |
![]() |
where ![]() ![]() |
M |
* | DEF_EQUAL_MAX |
![]() |
where ![]() ![]() |
M |
* | SIMP_SPECIAL_PLUS |
![]() |
A | |
* | SIMP_SPECIAL_MINUS_R |
![]() |
A | |
* | SIMP_SPECIAL_MINUS_L |
![]() |
A | |
* | SIMP_MINUS_MINUS |
![]() |
A | |
* | SIMP_MINUS_UNMINUS |
![]() |
where ![]() |
M |
* | SIMP_MULTI_MINUS |
![]() |
A | |
* | SIMP_MULTI_MINUS_PLUS_L |
![]() |
M | |
* | SIMP_MULTI_MINUS_PLUS_R |
![]() |
M | |
* | SIMP_MULTI_MINUS_PLUS_PLUS |
![]() |
M | |
* | SIMP_MULTI_PLUS_MINUS |
![]() |
M | |
* | SIMP_MULTI_ARITHREL_PLUS_PLUS |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_PLUS_R |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_PLUS_L |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_R |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_L |
![]() |
where the root relation (![]() ![]() |
M |
* | SIMP_SPECIAL_PROD_0 |
![]() |
A | |
* | SIMP_SPECIAL_PROD_1 |
![]() |
A | |
* | SIMP_SPECIAL_PROD_MINUS_EVEN |
![]() |
if an even number of ![]() |
A |
* | SIMP_SPECIAL_PROD_MINUS_ODD |
![]() |
if an odd number of ![]() |
A |
* | SIMP_LIT_MINUS |
![]() |
where ![]() |
A |
* | SIMP_LIT_EQUAL |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_LE |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_LT |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_GE |
![]() |
where ![]() ![]() |
A |
* | SIMP_LIT_GT |
![]() |
where ![]() ![]() |
A |
* | SIMP_DIV_MINUS |
![]() |
A | |
* | SIMP_SPECIAL_DIV_1 |
![]() |
A | |
* | SIMP_SPECIAL_DIV_0 |
![]() |
A | |
* | SIMP_SPECIAL_EXPN_1_R |
![]() |
A | |
* | SIMP_SPECIAL_EXPN_1_L |
![]() |
A | |
* | SIMP_SPECIAL_EXPN_0 |
![]() |
A | |
* | DEF_EXPN_STEP |
![]() |
with an additional PO ![]() |
M |
* | SIMP_MULTI_LE |
![]() |
A | |
* | SIMP_MULTI_LT |
![]() |
A | |
* | SIMP_MULTI_GE |
![]() |
A | |
* | SIMP_MULTI_GT |
![]() |
A | |
* | SIMP_MULTI_DIV |
![]() |
A | |
* | SIMP_MULTI_DIV_PROD |
![]() |
A | |
* | SIMP_MULTI_MOD |
![]() |
A | |
DISTRI_PROD_PLUS |
![]() |
M | ||
DISTRI_PROD_MINUS |
![]() |
M | ||
DERIV_NOT_EQUAL |
![]() |
![]() ![]() |
M |