Arithmetic Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Nicolas m Added DEF_IN_NATURAL, DEF_IN_NATURAL1 |
imported>Tommy m removed * on unimplemented rules |
||
Line 2: | Line 2: | ||
{{RRRow}}| ||{{Rulename|SIMP_SPECIAL_MOD_0}}||<math> 0 \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}| ||{{Rulename|SIMP_SPECIAL_MOD_0}}||<math> 0 \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}| ||{{Rulename|SIMP_SPECIAL_MOD_1}}||<math> E \,\bmod\, 1 \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}| ||{{Rulename|SIMP_SPECIAL_MOD_1}}||<math> E \,\bmod\, 1 \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MIN_SING}}||<math> \min (\{ E\} ) \;\;\defi\;\; E </math>|| where <math>E</math> is a single expression || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MAX_SING}}||<math> \max (\{ E\} ) \;\;\defi\;\; E </math>|| where <math>E</math> is a single expression || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MIN_NATURAL}}||<math> \min (\nat ) \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MIN_NATURAL1}}||<math> \min (\natn ) \;\;\defi\;\; 1 </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MIN_BUNION_SING}}||<math> \begin{array}{cl} & \min (S \bunion \ldots \bunion \{ \min (T)\} \bunion \ldots \bunion U) \\ \defi & \min (S \bunion \ldots \bunion T \bunion \ldots \bunion U) \\ \end{array} </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MAX_BUNION_SING}}||<math> \begin{array}{cl} & \max (S \bunion \ldots \bunion \{ \max (T)\} \bunion \ldots \bunion U) \\ \defi & \max (S \bunion \ldots \bunion T \bunion \ldots \bunion U) \\ \end{array} </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MIN_UPTO}}||<math> \min (E \upto F) \;\;\defi\;\; E </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MAX_UPTO}}||<math> \max (E \upto F) \;\;\defi\;\; F </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_MIN}}||<math> \min (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \min (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_MIN}}||<math> \min (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \min (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_MAX}}||<math> \max (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \max (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_MIN_UPTO}}||<math> \min (\{ i, \ldots , j\} ) \;\;\defi\;\; A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_MAX_UPTO}}||<math> \max (\{ i, \ldots , j\} ) \;\;\defi\;\; A \;\;(computation) </math>|| where <math>i, ... ,\,j</math> are literals || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CARD}}||<math> \card (\emptyset ) \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CARD}}||<math> \card (\emptyset ) \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_SING}}||<math> \card (\{ E\} ) \;\;\defi\;\; 1 </math>|| where <math>E</math> is a single expression || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_SING}}||<math> \card (\{ E\} ) \;\;\defi\;\; 1 </math>|| where <math>E</math> is a single expression || A | ||
Line 21: | Line 21: | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_SETMINUS}}||<math> \card (S \setminus T) \;\;\defi\;\; \card (S) - \card (S \binter T) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_SETMINUS}}||<math> \card (S \setminus T) \;\;\defi\;\; \card (S) - \card (S \binter T) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_CPROD}}||<math> \card (S \cprod T) \;\;\defi\;\; \card (S) * \card (T) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_CPROD}}||<math> \card (S \cprod T) \;\;\defi\;\; \card (S) * \card (T) </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_CARD_CONVERSE}}||<math> \card (r^{-1} ) \;\;\defi\;\; \card (r) </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_CARD_ID}}||<math> \card (\id (S)) \;\;\defi\;\; \card (S) </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_CARD_LAMBDA}}||<math> \card (\lambda x\qdot (P \mid E)) \;\;\defi\;\; \card (\{ x \qdot P \mid x\} ) </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_CARD_COMPSET}}||<math> \card (\{ x \qdot x \in S \mid x\} ) \;\;\defi\;\; \card (S) </math>|| where <math>x</math> non free in <math>S</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_CARD_UPTO}}||<math> \card (i \upto j) \;\;\defi\;\; j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_CARD_UPTO}}||<math> \card (i \upto j) \;\;\defi\;\; j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_TYPE_CARD}}||<math> \card (\mathit{Tenum}) \;\;\defi\;\; N </math>|| where <math>\mathit{Tenum}</math> is a carrier set containing <math>N</math> elements || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_GE_CARD_0}}||<math> \card (S) \geq 1 \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_LE_CARD_1}}||<math> 1 \leq \card (S) \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_LE_CARD_0}}||<math> 0 \leq \card (S) \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_GE_CARD_0}}||<math> \card (S) \geq 0 \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_GE_CARD_0}}||<math> \card (S) \geq 0 \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_GT_CARD_0}}||<math> \card (S) > 0 \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_GT_CARD_0}}||<math> \card (S) > 0 \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_LT_CARD_0}}||<math> 0 < \card (S) \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_LT_CARD_0}}||<math> 0 < \card (S) \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_CARD_1}}||<math> \card (S) = 1 \;\;\defi\;\; \exists x \qdot S = \{ x\} </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_CARD_1}}||<math> \card (S) = 1 \;\;\defi\;\; \exists x \qdot S = \{ x\} </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_CARD_NATURAL}}||<math> \card (S) \in \nat \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_CARD_NATURAL1}}||<math> \card (S) \in \natn \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_IN_NATURAL}}||<math> i \in \nat \;\;\defi\;\; \btrue </math>|| where <math>i</math> is a literal || A | ||
{{RRRow}}| ||{{Rulename|SIMP_SPECIAL_IN_NATURAL1}}||<math> 0 \in \natn \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}| ||{{Rulename|SIMP_SPECIAL_IN_NATURAL1}}||<math> 0 \in \natn \;\;\defi\;\; \bfalse </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_IN_NATURAL1}}||<math> i \in \natn \;\;\defi\;\; \btrue </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_UPTO}}||<math> i \upto j \;\;\defi\;\; \emptyset </math>|| where <math>i</math> and <math>j</math> are literals and <math>j < i</math> || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_IN_MINUS_NATURAL}}||<math> -i \in \nat \;\;\defi\;\; \bfalse </math>|| where <math>i</math> is a literal and <math>1 \leq i</math> || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_IN_MINUS_NATURAL1}}||<math> -i \in \natn \;\;\defi\;\; \bfalse </math>|| where <math>i</math> is a literal || A | ||
{{RRRow}}| ||{{Rulename|DEF_IN_NATURAL}}||<math>x \in \nat \;\;\defi\;\; 0 \leq x </math>|| where <math>x </math> has type <math>\Z</math> || A | {{RRRow}}| ||{{Rulename|DEF_IN_NATURAL}}||<math>x \in \nat \;\;\defi\;\; 0 \leq x </math>|| where <math>x </math> has type <math>\Z</math> || A | ||
{{RRRow}}| ||{{Rulename|DEF_IN_NATURAL1}}||<math>x \in \natn \;\;\defi\;\; 1 \leq x </math>|| where <math>x </math> has type <math>\Z</math> || A | {{RRRow}}| ||{{Rulename|DEF_IN_NATURAL1}}||<math>x \in \natn \;\;\defi\;\; 1 \leq x </math>|| where <math>x </math> has type <math>\Z</math> || A | ||
Line 48: | Line 48: | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_TRUE}}||<math> \bool (P) = \True \;\;\defi\;\; P </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_TRUE}}||<math> \bool (P) = \True \;\;\defi\;\; P </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_FALSE}}||<math> \bool (P) = \False \;\;\defi\;\; \lnot\, P </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_KBOOL_FALSE}}||<math> \bool (P) = \False \;\;\defi\;\; \lnot\, P </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DEF_EQUAL_MIN}}||<math> E = \min (S) \;\;\defi\;\; E \in S \land (\forall x \qdot x \in S \limp E \leq x) </math>|| where <math>x</math> non free in <math>S, E</math> || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DEF_EQUAL_MAX}}||<math> E = \max (S) \;\;\defi\;\; E \in S \land (\forall x \qdot x \in S \limp E \geq x) </math>|| where <math>x</math> non free in <math>S, E</math> || M | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PLUS}}||<math> E + \ldots + 0 + \ldots + F \;\;\defi\;\; E + \ldots + F </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PLUS}}||<math> E + \ldots + 0 + \ldots + F \;\;\defi\;\; E + \ldots + F </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_MINUS_R}}||<math> E - 0 \;\;\defi\;\; E </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_MINUS_R}}||<math> E - 0 \;\;\defi\;\; E </math>|| || A | ||
Line 69: | Line 69: | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PROD_MINUS_EVEN}}||<math> (-E) * \ldots * (-F) \;\;\defi\;\; E * \ldots * F </math>|| if an even number of <math>-</math> || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PROD_MINUS_EVEN}}||<math> (-E) * \ldots * (-F) \;\;\defi\;\; E * \ldots * F </math>|| if an even number of <math>-</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PROD_MINUS_ODD}}||<math> (-E) * \ldots * (-F) \;\;\defi\;\; -(E * \ldots * F) </math>|| if an odd number of <math>-</math> || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_PROD_MINUS_ODD}}||<math> (-E) * \ldots * (-F) \;\;\defi\;\; -(E * \ldots * F) </math>|| if an odd number of <math>-</math> || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_MINUS}}||<math> - (i) \;\;\defi\;\; (-i) </math>|| where <math>i</math> is a literal || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_LIT_MINUS_MINUS}}||<math> - (-i) \;\;\defi\;\; i </math>|| where <math>i</math> is a literal || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL}}||<math> i = j \;\;\defi\;\; \btrue \;or\; \bfalse \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL}}||<math> i = j \;\;\defi\;\; \btrue \;or\; \bfalse \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_LE}}||<math> i \leq j \;\;\defi\;\; \btrue \;or\; \bfalse \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_LE}}||<math> i \leq j \;\;\defi\;\; \btrue \;or\; \bfalse \;\;(computation) </math>|| where <math>i</math> and <math>j</math> are literals || A | ||
Line 88: | Line 88: | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV}}||<math> E \div E \;\;\defi\;\; 1 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV}}||<math> E \div E \;\;\defi\;\; 1 </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV_PROD}}||<math> (X * \ldots * E * \ldots * Y) \div E \;\;\defi\;\; X * \ldots * Y </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV_PROD}}||<math> (X * \ldots * E * \ldots * Y) \div E \;\;\defi\;\; X * \ldots * Y </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|SIMP_MULTI_MOD}}||<math> E \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_PROD_PLUS}}||<math> a * (b + c) \;\;\defi\;\; (a * b) + (a * c) </math>|| || M | ||
{{RRRow}}| | {{RRRow}}|||{{Rulename|DISTRI_PROD_MINUS}}||<math> a * (b - c) \;\;\defi\;\; (a * b) - (a * c) </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}||<math> \card (S) \leq \card (T) \;\;\defi\;\; S \subseteq T </math>|| <math>S</math> and <math>T</math> must be of the same type || M | {{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}||<math> \card (S) \leq \card (T) \;\;\defi\;\; S \subseteq T </math>|| <math>S</math> and <math>T</math> must be of the same type || M | ||
{{RRRow}}|*||{{Rulename|DERIV_GE_CARD}}||<math> \card (S) \geq \card (T) \;\;\defi\;\; T \subseteq S </math>|| <math>S</math> and <math>T</math> must be of the same type || M | {{RRRow}}|*||{{Rulename|DERIV_GE_CARD}}||<math> \card (S) \geq \card (T) \;\;\defi\;\; T \subseteq S </math>|| <math>S</math> and <math>T</math> must be of the same type || M |
Revision as of 10:55, 21 December 2009
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
SIMP_SPECIAL_MOD_0 |
A | |||
SIMP_SPECIAL_MOD_1 |
A | |||
SIMP_MIN_SING |
where is a single expression | A | ||
SIMP_MAX_SING |
where is a single expression | A | ||
SIMP_MIN_NATURAL |
A | |||
SIMP_MIN_NATURAL1 |
A | |||
SIMP_MIN_BUNION_SING |
A | |||
SIMP_MAX_BUNION_SING |
A | |||
SIMP_MIN_UPTO |
A | |||
SIMP_MAX_UPTO |
A | |||
* | SIMP_LIT_MIN |
where and are literals and | A | |
SIMP_LIT_MAX |
where and are literals and | A | ||
SIMP_LIT_MIN_UPTO |
where are literals | A | ||
SIMP_LIT_MAX_UPTO |
where are literals | A | ||
* | SIMP_SPECIAL_CARD |
A | ||
* | SIMP_CARD_SING |
where is a single expression | A | |
* | SIMP_SPECIAL_EQUAL_CARD |
A | ||
* | SIMP_CARD_POW |
A | ||
* | SIMP_CARD_BUNION |
A | ||
* | SIMP_CARD_SETMINUS |
A | ||
* | SIMP_CARD_CPROD |
A | ||
SIMP_CARD_CONVERSE |
A | |||
SIMP_CARD_ID |
A | |||
SIMP_CARD_LAMBDA |
A | |||
SIMP_CARD_COMPSET |
where non free in | A | ||
* | SIMP_LIT_CARD_UPTO |
where and are literals and | A | |
SIMP_TYPE_CARD |
where is a carrier set containing elements | A | ||
SIMP_LIT_GE_CARD_0 |
A | |||
SIMP_LIT_LE_CARD_1 |
A | |||
SIMP_LIT_LE_CARD_0 |
A | |||
* | SIMP_LIT_GE_CARD_0 |
A | ||
* | SIMP_LIT_GT_CARD_0 |
A | ||
* | SIMP_LIT_LT_CARD_0 |
A | ||
* | SIMP_LIT_EQUAL_CARD_1 |
A | ||
SIMP_CARD_NATURAL |
A | |||
SIMP_CARD_NATURAL1 |
A | |||
SIMP_LIT_IN_NATURAL |
where is a literal | A | ||
SIMP_SPECIAL_IN_NATURAL1 |
A | |||
SIMP_LIT_IN_NATURAL1 |
where is a literal and | A | ||
SIMP_LIT_UPTO |
where and are literals and | A | ||
SIMP_LIT_IN_MINUS_NATURAL |
where is a literal and | A | ||
SIMP_LIT_IN_MINUS_NATURAL1 |
where is a literal | A | ||
DEF_IN_NATURAL |
where has type | A | ||
DEF_IN_NATURAL1 |
where has type | A | ||
SIMP_SPECIAL_KBOOL_BTRUE |
A | |||
SIMP_SPECIAL_KBOOL_BFALSE |
A | |||
* | SIMP_LIT_EQUAL_KBOOL_TRUE |
A | ||
* | SIMP_LIT_EQUAL_KBOOL_FALSE |
A | ||
DEF_EQUAL_MIN |
where non free in | M | ||
DEF_EQUAL_MAX |
where non free in | M | ||
* | SIMP_SPECIAL_PLUS |
A | ||
* | SIMP_SPECIAL_MINUS_R |
A | ||
* | SIMP_SPECIAL_MINUS_L |
A | ||
* | SIMP_MINUS_MINUS |
A | ||
* | SIMP_MINUS_UNMINUS |
where is a unary minus expression or a negative literal | M | |
* | SIMP_MULTI_MINUS |
A | ||
* | SIMP_MULTI_MINUS_PLUS_L |
M | ||
* | SIMP_MULTI_MINUS_PLUS_R |
M | ||
* | SIMP_MULTI_MINUS_PLUS_PLUS |
M | ||
* | SIMP_MULTI_PLUS_MINUS |
M | ||
* | SIMP_MULTI_ARITHREL_PLUS_PLUS |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_PLUS_R |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_PLUS_L |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_R |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_L |
where the root relation ( here) is one of | M | |
* | SIMP_SPECIAL_PROD_0 |
A | ||
* | SIMP_SPECIAL_PROD_1 |
A | ||
* | SIMP_SPECIAL_PROD_MINUS_EVEN |
if an even number of | A | |
* | SIMP_SPECIAL_PROD_MINUS_ODD |
if an odd number of | A | |
SIMP_LIT_MINUS |
where is a literal | A | ||
SIMP_LIT_MINUS_MINUS |
where is a literal | A | ||
* | SIMP_LIT_EQUAL |
where and are literals | A | |
* | SIMP_LIT_LE |
where and are literals | A | |
* | SIMP_LIT_LT |
where and are literals | A | |
* | SIMP_LIT_GE |
where and are literals | A | |
* | SIMP_LIT_GT |
where and are literals | A | |
* | SIMP_DIV_MINUS |
A | ||
SIMP_SPECIAL_DIV_1 |
A | |||
* | SIMP_SPECIAL_DIV_0 |
A | ||
* | SIMP_SPECIAL_EXPN_1_R |
A | ||
* | SIMP_SPECIAL_EXPN_1_L |
A | ||
* | SIMP_SPECIAL_EXPN_0 |
A | ||
* | SIMP_MULTI_LE |
A | ||
* | SIMP_MULTI_LT |
A | ||
* | SIMP_MULTI_GE |
A | ||
* | SIMP_MULTI_GT |
A | ||
* | SIMP_MULTI_DIV |
A | ||
* | SIMP_MULTI_DIV_PROD |
A | ||
SIMP_MULTI_MOD |
A | |||
DISTRI_PROD_PLUS |
M | |||
DISTRI_PROD_MINUS |
M | |||
* | DERIV_LE_CARD |
and must be of the same type | M | |
* | DERIV_GE_CARD |
and must be of the same type | M | |
* | DERIV_LT_CARD |
and must be of the same type | M | |
* | DERIV_GT_CARD |
and must be of the same type | M | |
* | DERIV_EQUAL_CARD |
and must be of the same type | M | |
DERIV_NOT_EQUAL |
and must be of Integer type | M |