Arithmetic Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Removed rule SIMP_CARD_COMPSET which is superseded by SIMP_COMPSET_IN. |
imported>Benoit m Added stars to the automatic rules implemented in auto rewriter L2. |
||
Line 4: | Line 4: | ||
{{RRHeader}} | {{RRHeader}} | ||
{{RRRow}}| ||{{Rulename|SIMP_SPECIAL_MOD_0}}||<math> 0 \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_MOD_0}}||<math> 0 \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}| ||{{Rulename|SIMP_SPECIAL_MOD_1}}||<math> E \,\bmod\, 1 \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_MOD_1}}||<math> E \,\bmod\, 1 \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MIN_SING}}||<math> \min (\{ E\} ) \;\;\defi\;\; E </math>|| where <math>E</math> is a single expression || A | {{RRRow}}|*||{{Rulename|SIMP_MIN_SING}}||<math> \min (\{ E\} ) \;\;\defi\;\; E </math>|| where <math>E</math> is a single expression || A | ||
{{RRRow}}|||{{Rulename|SIMP_MAX_SING}}||<math> \max (\{ E\} ) \;\;\defi\;\; E </math>|| where <math>E</math> is a single expression || A | {{RRRow}}|*||{{Rulename|SIMP_MAX_SING}}||<math> \max (\{ E\} ) \;\;\defi\;\; E </math>|| where <math>E</math> is a single expression || A | ||
{{RRRow}}|||{{Rulename|SIMP_MIN_NATURAL}}||<math> \min (\nat ) \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MIN_NATURAL}}||<math> \min (\nat ) \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MIN_NATURAL1}}||<math> \min (\natn ) \;\;\defi\;\; 1 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MIN_NATURAL1}}||<math> \min (\natn ) \;\;\defi\;\; 1 </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MIN_BUNION_SING}}||<math> \begin{array}{cl} & \min (S \bunion \ldots \bunion \{ \min (T)\} \bunion \ldots \bunion U) \\ \defi & \min (S \bunion \ldots \bunion T \bunion \ldots \bunion U) \\ \end{array} </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MIN_BUNION_SING}}||<math> \begin{array}{cl} & \min (S \bunion \ldots \bunion \{ \min (T)\} \bunion \ldots \bunion U) \\ \defi & \min (S \bunion \ldots \bunion T \bunion \ldots \bunion U) \\ \end{array} </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MAX_BUNION_SING}}||<math> \begin{array}{cl} & \max (S \bunion \ldots \bunion \{ \max (T)\} \bunion \ldots \bunion U) \\ \defi & \max (S \bunion \ldots \bunion T \bunion \ldots \bunion U) \\ \end{array} </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MAX_BUNION_SING}}||<math> \begin{array}{cl} & \max (S \bunion \ldots \bunion \{ \max (T)\} \bunion \ldots \bunion U) \\ \defi & \max (S \bunion \ldots \bunion T \bunion \ldots \bunion U) \\ \end{array} </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MIN_UPTO}}||<math> \min (E \upto F) \;\;\defi\;\; E </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MIN_UPTO}}||<math> \min (E \upto F) \;\;\defi\;\; E </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MAX_UPTO}}||<math> \max (E \upto F) \;\;\defi\;\; F </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MAX_UPTO}}||<math> \max (E \upto F) \;\;\defi\;\; F </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_MIN}}||<math> \min (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \min (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_MIN}}||<math> \min (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \min (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_MAX}}||<math> \max (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \max (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_MAX}}||<math> \max (\{ E, \ldots , i, \ldots , j, \ldots , H\} ) \;\;\defi\;\; \max (\{ E, \ldots , i, \ldots , H\} ) </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \geq j</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CARD}}||<math> \card (\emptyset ) \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_CARD}}||<math> \card (\emptyset ) \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_SING}}||<math> \card (\{ E\} ) \;\;\defi\;\; 1 </math>|| where <math>E</math> is a single expression || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_SING}}||<math> \card (\{ E\} ) \;\;\defi\;\; 1 </math>|| where <math>E</math> is a single expression || A | ||
Line 21: | Line 21: | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_POW}}||<math> \card (\pow (S)) \;\;\defi\;\; 2 ^ \card (S) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_POW}}||<math> \card (\pow (S)) \;\;\defi\;\; 2 ^ \card (S) </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_CARD_BUNION}}||<math> \card (S \bunion T) \;\;\defi\;\; \card (S) + \card (T) - \card (S \binter T) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_BUNION}}||<math> \card (S \bunion T) \;\;\defi\;\; \card (S) + \card (T) - \card (S \binter T) </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_CONVERSE}}||<math> \card (r^{-1} ) \;\;\defi\;\; \card (r) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_CONVERSE}}||<math> \card (r^{-1} ) \;\;\defi\;\; \card (r) </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_ID}}||<math> \card (\id) \;\;\defi\;\; \card (S) </math>|| where <math>\id</math> has type <math>\pow (S \cprod S) </math>|| A | {{RRRow}}|||{{Rulename|SIMP_CARD_ID}}||<math> \card (\id) \;\;\defi\;\; \card (S) </math>|| where <math>\id</math> has type <math>\pow (S \cprod S) </math>|| A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_ID_DOMRES}}||<math> \card (S\domres\id) \;\;\defi\;\; \card (S) </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_ID_DOMRES}}||<math> \card (S\domres\id) \;\;\defi\;\; \card (S) </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_PRJ1}}||<math> \card (\prjone) \;\;\defi\;\; \card (S \cprod T) </math>|| where <math>\prjone</math> has type <math>\pow(S \cprod T \cprod S)</math> || A | {{RRRow}}|||{{Rulename|SIMP_CARD_PRJ1}}||<math> \card (\prjone) \;\;\defi\;\; \card (S \cprod T) </math>|| where <math>\prjone</math> has type <math>\pow(S \cprod T \cprod S)</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_PRJ2}}||<math> \card (\prjtwo) \;\;\defi\;\; \card (S \cprod T) </math>|| where <math>\prjtwo</math> has type <math>\pow(S \cprod T \cprod T)</math> || A | {{RRRow}}|||{{Rulename|SIMP_CARD_PRJ2}}||<math> \card (\prjtwo) \;\;\defi\;\; \card (S \cprod T) </math>|| where <math>\prjtwo</math> has type <math>\pow(S \cprod T \cprod T)</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_PRJ1_DOMRES}}||<math> \card (E \domres \prjone) \;\;\defi\;\; \card (E) </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_CARD_PRJ1_DOMRES}}||<math> \card (E \domres \prjone) \;\;\defi\;\; \card (E) </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_PRJ2_DOMRES}}||<math> \card (E \domres \prjtwo) \;\;\defi\;\; \card (E) </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_CARD_PRJ2_DOMRES}}||<math> \card (E \domres \prjtwo) \;\;\defi\;\; \card (E) </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_LAMBDA}}||<math> \card(\{x\qdot P\mid E\mapsto F\}) \;\;\defi\;\; \card(\{x\qdot P\mid E\} ) </math>|| where <math>E</math> is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., <math>E</math> is syntactically injective) and all identifiers bound by the comprehension set that occur in <math>F</math> also occur in <math>E</math> || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_LAMBDA}}||<math> \card(\{x\qdot P\mid E\mapsto F\}) \;\;\defi\;\; \card(\{x\qdot P\mid E\} ) </math>|| where <math>E</math> is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., <math>E</math> is syntactically injective) and all identifiers bound by the comprehension set that occur in <math>F</math> also occur in <math>E</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_CARD_UPTO}}||<math> \card (i \upto j) \;\;\defi\;\; j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_CARD_UPTO}}||<math> \card (i \upto j) \;\;\defi\;\; j-i+1 </math>|| where <math>i</math> and <math>j</math> are literals and <math>i \leq j</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_TYPE_CARD}}||<math> \card (\mathit{Tenum}) \;\;\defi\;\; N </math>|| where <math>\mathit{Tenum}</math> is a carrier set containing <math>N</math> elements || A | {{RRRow}}|||{{Rulename|SIMP_TYPE_CARD}}||<math> \card (\mathit{Tenum}) \;\;\defi\;\; N </math>|| where <math>\mathit{Tenum}</math> is a carrier set containing <math>N</math> elements || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_GE_CARD_1}}||<math> \card (S) \geq 1 \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_GE_CARD_1}}||<math> \card (S) \geq 1 \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_LE_CARD_1}}||<math> 1 \leq \card (S) \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_LE_CARD_1}}||<math> 1 \leq \card (S) \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_LE_CARD_0}}||<math> 0 \leq \card (S) \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_LE_CARD_0}}||<math> 0 \leq \card (S) \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_GE_CARD_0}}||<math> \card (S) \geq 0 \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_GE_CARD_0}}||<math> \card (S) \geq 0 \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_GT_CARD_0}}||<math> \card (S) > 0 \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_GT_CARD_0}}||<math> \card (S) > 0 \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_LT_CARD_0}}||<math> 0 < \card (S) \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_LT_CARD_0}}||<math> 0 < \card (S) \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_CARD_1}}||<math> \card (S) = 1 \;\;\defi\;\; \exists x \qdot S = \{ x\} </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_EQUAL_CARD_1}}||<math> \card (S) = 1 \;\;\defi\;\; \exists x \qdot S = \{ x\} </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_NATURAL}}||<math> \card (S) \in \nat \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_NATURAL}}||<math> \card (S) \in \nat \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_CARD_NATURAL1}}||<math> \card (S) \in \natn \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_CARD_NATURAL1}}||<math> \card (S) \in \natn \;\;\defi\;\; \lnot\, S = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_IN_NATURAL}}||<math> i \in \nat \;\;\defi\;\; \btrue </math>|| where <math>i</math> is a non-negative literal || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_IN_NATURAL}}||<math> i \in \nat \;\;\defi\;\; \btrue </math>|| where <math>i</math> is a non-negative literal || A | ||
{{RRRow}}| ||{{Rulename|SIMP_SPECIAL_IN_NATURAL1}}||<math> 0 \in \natn \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_IN_NATURAL1}}||<math> 0 \in \natn \;\;\defi\;\; \bfalse </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_IN_NATURAL1}}||<math> i \in \natn \;\;\defi\;\; \btrue </math>|| where <math>i</math> is a positive literal || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_IN_NATURAL1}}||<math> i \in \natn \;\;\defi\;\; \btrue </math>|| where <math>i</math> is a positive literal || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_UPTO}}||<math> i \upto j \;\;\defi\;\; \emptyset </math>|| where <math>i</math> and <math>j</math> are literals and <math>j < i</math> || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_UPTO}}||<math> i \upto j \;\;\defi\;\; \emptyset </math>|| where <math>i</math> and <math>j</math> are literals and <math>j < i</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_IN_MINUS_NATURAL}}||<math> -i \in \nat \;\;\defi\;\; \bfalse </math>|| where <math>i</math> is a positive literal || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_IN_MINUS_NATURAL}}||<math> -i \in \nat \;\;\defi\;\; \bfalse </math>|| where <math>i</math> is a positive literal || A | ||
{{RRRow}}|||{{Rulename|SIMP_LIT_IN_MINUS_NATURAL1}}||<math> -i \in \natn \;\;\defi\;\; \bfalse </math>|| where <math>i</math> is a non-negative literal || A | {{RRRow}}|*||{{Rulename|SIMP_LIT_IN_MINUS_NATURAL1}}||<math> -i \in \natn \;\;\defi\;\; \bfalse </math>|| where <math>i</math> is a non-negative literal || A | ||
{{RRRow}}|*||{{Rulename|DEF_IN_NATURAL}}||<math>x \in \nat \;\;\defi\;\; 0 \leq x </math>|| || M | {{RRRow}}|*||{{Rulename|DEF_IN_NATURAL}}||<math>x \in \nat \;\;\defi\;\; 0 \leq x </math>|| || M | ||
{{RRRow}}|*||{{Rulename|DEF_IN_NATURAL1}}||<math>x \in \natn \;\;\defi\;\; 1 \leq x </math>|| || M | {{RRRow}}|*||{{Rulename|DEF_IN_NATURAL1}}||<math>x \in \natn \;\;\defi\;\; 1 \leq x </math>|| || M | ||
Line 91: | Line 91: | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV}}||<math> E \div E \;\;\defi\;\; 1 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV}}||<math> E \div E \;\;\defi\;\; 1 </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV_PROD}}||<math> (X * \ldots * E * \ldots * Y) \div E \;\;\defi\;\; X * \ldots * Y </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_DIV_PROD}}||<math> (X * \ldots * E * \ldots * Y) \div E \;\;\defi\;\; X * \ldots * Y </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_MULTI_MOD}}||<math> E \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A | {{RRRow}}|*||{{Rulename|SIMP_MULTI_MOD}}||<math> E \,\bmod\, E \;\;\defi\;\; 0 </math>|| || A | ||
{{RRRow}}|||{{Rulename|DISTRI_PROD_PLUS}}||<math> a * (b + c) \;\;\defi\;\; (a * b) + (a * c) </math>|| || M | {{RRRow}}|||{{Rulename|DISTRI_PROD_PLUS}}||<math> a * (b + c) \;\;\defi\;\; (a * b) + (a * c) </math>|| || M | ||
{{RRRow}}|||{{Rulename|DISTRI_PROD_MINUS}}||<math> a * (b - c) \;\;\defi\;\; (a * b) - (a * c) </math>|| || M | {{RRRow}}|||{{Rulename|DISTRI_PROD_MINUS}}||<math> a * (b - c) \;\;\defi\;\; (a * b) - (a * c) </math>|| || M |
Revision as of 17:07, 17 January 2011
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | SIMP_SPECIAL_MOD_0 |
A | ||
* | SIMP_SPECIAL_MOD_1 |
A | ||
* | SIMP_MIN_SING |
where is a single expression | A | |
* | SIMP_MAX_SING |
where is a single expression | A | |
* | SIMP_MIN_NATURAL |
A | ||
* | SIMP_MIN_NATURAL1 |
A | ||
* | SIMP_MIN_BUNION_SING |
A | ||
* | SIMP_MAX_BUNION_SING |
A | ||
* | SIMP_MIN_UPTO |
A | ||
* | SIMP_MAX_UPTO |
A | ||
* | SIMP_LIT_MIN |
where and are literals and | A | |
* | SIMP_LIT_MAX |
where and are literals and | A | |
* | SIMP_SPECIAL_CARD |
A | ||
* | SIMP_CARD_SING |
where is a single expression | A | |
* | SIMP_SPECIAL_EQUAL_CARD |
A | ||
* | SIMP_CARD_POW |
A | ||
* | SIMP_CARD_BUNION |
A | ||
* | SIMP_CARD_CONVERSE |
A | ||
SIMP_CARD_ID |
where has type | A | ||
* | SIMP_CARD_ID_DOMRES |
A | ||
SIMP_CARD_PRJ1 |
where has type | A | ||
SIMP_CARD_PRJ2 |
where has type | A | ||
SIMP_CARD_PRJ1_DOMRES |
A | |||
SIMP_CARD_PRJ2_DOMRES |
A | |||
* | SIMP_CARD_LAMBDA |
where is a maplet combination of bound identifiers and expressions that are not bound by the comprehension set (i.e., is syntactically injective) and all identifiers bound by the comprehension set that occur in also occur in | A | |
* | SIMP_LIT_CARD_UPTO |
where and are literals and | A | |
SIMP_TYPE_CARD |
where is a carrier set containing elements | A | ||
* | SIMP_LIT_GE_CARD_1 |
A | ||
* | SIMP_LIT_LE_CARD_1 |
A | ||
* | SIMP_LIT_LE_CARD_0 |
A | ||
* | SIMP_LIT_GE_CARD_0 |
A | ||
* | SIMP_LIT_GT_CARD_0 |
A | ||
* | SIMP_LIT_LT_CARD_0 |
A | ||
* | SIMP_LIT_EQUAL_CARD_1 |
A | ||
* | SIMP_CARD_NATURAL |
A | ||
* | SIMP_CARD_NATURAL1 |
A | ||
* | SIMP_LIT_IN_NATURAL |
where is a non-negative literal | A | |
* | SIMP_SPECIAL_IN_NATURAL1 |
A | ||
* | SIMP_LIT_IN_NATURAL1 |
where is a positive literal | A | |
* | SIMP_LIT_UPTO |
where and are literals and | A | |
* | SIMP_LIT_IN_MINUS_NATURAL |
where is a positive literal | A | |
* | SIMP_LIT_IN_MINUS_NATURAL1 |
where is a non-negative literal | A | |
* | DEF_IN_NATURAL |
M | ||
* | DEF_IN_NATURAL1 |
M | ||
SIMP_SPECIAL_KBOOL_BTRUE |
A | |||
SIMP_SPECIAL_KBOOL_BFALSE |
A | |||
* | SIMP_LIT_EQUAL_KBOOL_TRUE |
A | ||
* | SIMP_LIT_EQUAL_KBOOL_FALSE |
A | ||
DEF_EQUAL_MIN |
where non free in | M | ||
DEF_EQUAL_MAX |
where non free in | M | ||
* | SIMP_SPECIAL_PLUS |
A | ||
* | SIMP_SPECIAL_MINUS_R |
A | ||
* | SIMP_SPECIAL_MINUS_L |
A | ||
* | SIMP_MINUS_MINUS |
A | ||
* | SIMP_MINUS_UNMINUS |
where is a unary minus expression or a negative literal | M | |
* | SIMP_MULTI_MINUS |
A | ||
* | SIMP_MULTI_MINUS_PLUS_L |
M | ||
* | SIMP_MULTI_MINUS_PLUS_R |
M | ||
* | SIMP_MULTI_MINUS_PLUS_PLUS |
M | ||
* | SIMP_MULTI_PLUS_MINUS |
M | ||
* | SIMP_MULTI_ARITHREL_PLUS_PLUS |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_PLUS_R |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_PLUS_L |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_R |
where the root relation ( here) is one of | M | |
* | SIMP_MULTI_ARITHREL_MINUS_MINUS_L |
where the root relation ( here) is one of | M | |
* | SIMP_SPECIAL_PROD_0 |
A | ||
* | SIMP_SPECIAL_PROD_1 |
A | ||
* | SIMP_SPECIAL_PROD_MINUS_EVEN |
if an even number of | A | |
* | SIMP_SPECIAL_PROD_MINUS_ODD |
if an odd number of | A | |
* | SIMP_LIT_MINUS |
where is a literal | A | |
* | SIMP_LIT_EQUAL |
where and are literals | A | |
* | SIMP_LIT_LE |
where and are literals | A | |
* | SIMP_LIT_LT |
where and are literals | A | |
* | SIMP_LIT_GE |
where and are literals | A | |
* | SIMP_LIT_GT |
where and are literals | A | |
* | SIMP_DIV_MINUS |
A | ||
* | SIMP_SPECIAL_DIV_1 |
A | ||
* | SIMP_SPECIAL_DIV_0 |
A | ||
* | SIMP_SPECIAL_EXPN_1_R |
A | ||
* | SIMP_SPECIAL_EXPN_1_L |
A | ||
* | SIMP_SPECIAL_EXPN_0 |
A | ||
* | SIMP_MULTI_LE |
A | ||
* | SIMP_MULTI_LT |
A | ||
* | SIMP_MULTI_GE |
A | ||
* | SIMP_MULTI_GT |
A | ||
* | SIMP_MULTI_DIV |
A | ||
* | SIMP_MULTI_DIV_PROD |
A | ||
* | SIMP_MULTI_MOD |
A | ||
DISTRI_PROD_PLUS |
M | |||
DISTRI_PROD_MINUS |
M | |||
DERIV_NOT_EQUAL |
and must be of Integer type | M |