Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Frederic New page: {{RRHeader}} {{RRRow}}|<font size="-2"> SIMP_SPECIAL_AND_BTRUE </font>||<math> P \land \ldots \land \btrue \land \ldots \land Q \;\;\defi\;\; P \land \ldots \land Q </math>|| ... |
imported>Frederic No edit summary |
||
Line 16: | Line 16: | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_IMP_AND_NOT_R </font>||<math> P \land \ldots \land Q \land \ldots \land R \limp \lnot\, Q \;\;\defi\;\; \lnot\,(P \land \ldots \land Q \land \ldots \land R) </math>|| || A | {{RRRow}}|<font size="-2"> SIMP_MULTI_IMP_AND_NOT_R </font>||<math> P \land \ldots \land Q \land \ldots \land R \limp \lnot\, Q \;\;\defi\;\; \lnot\,(P \land \ldots \land Q \land \ldots \land R) </math>|| || A | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_IMP_AND_NOT_L </font>||<math> P \land \ldots \land \lnot\, Q \land \ldots \land R \limp Q \;\;\defi\;\; \lnot\,(P \land \ldots \land \lnot\, Q \land \ldots \land R) </math>|| || A | {{RRRow}}|<font size="-2"> SIMP_MULTI_IMP_AND_NOT_L </font>||<math> P \land \ldots \land \lnot\, Q \land \ldots \land R \limp Q \;\;\defi\;\; \lnot\,(P \land \ldots \land \lnot\, Q \land \ldots \land R) </math>|| || A | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_EQV </font>||<math> P \leqv P \;\;\defi\;\; \btrue </math>|| || A | {{RRRow}}|<font size="-2"> SIMP_MULTI_EQV </font>||<math> P \leqv P \;\;\defi\;\; \btrue </math>|| || A | ||
{{RRRow}}|<font size="-2"> SIMP_MULTI_EQV_NOT </font>||<math> P \leqv \lnot\, P \;\;\defi\;\; \bfalse </math>|| || A | {{RRRow}}|<font size="-2"> SIMP_MULTI_EQV_NOT </font>||<math> P \leqv \lnot\, P \;\;\defi\;\; \bfalse </math>|| || A | ||
Line 124: | Line 122: | ||
{{RRRow}}|<font size="-2"> SIMP_FINITE_QUNION </font>||<math> \finite (\Union x \qdot P \mid E) \;\;\defi\;\; \forall x \qdot P \limp \finite (E) </math>|| || M | {{RRRow}}|<font size="-2"> SIMP_FINITE_QUNION </font>||<math> \finite (\Union x \qdot P \mid E) \;\;\defi\;\; \forall x \qdot P \limp \finite (E) </math>|| || M | ||
{{RRRow}}|<font size="-2"> SIMP_FINITE_QINTER </font>||<math> \finite (\Inter x \qdot P \mid E) \;\;\defi\;\; \exists x \qdot P \land \finite (E) </math>|| || M | {{RRRow}}|<font size="-2"> SIMP_FINITE_QINTER </font>||<math> \finite (\Inter x \qdot P \mid E) \;\;\defi\;\; \exists x \qdot P \land \finite (E) </math>|| || M | ||
{{RRRow}}|<font size="-2"> SIMP_FINITE_ID </font>||<math> \finite (\id (S)) \;\;\defi\;\; \finite (S) </math>|| || A | |||
{{RRRow}}|<font size="-2"> SIMP_FINITE_NATURAL </font>||<math> \finite (\nat ) \;\;\defi\;\; \bfalse </math>|| || A | |||
{{RRRow}}|<font size="-2"> SIMP_FINITE_NATURAL1 </font>||<math> \finite (\natn ) \;\;\defi\;\; \bfalse </math>|| || A | |||
{{RRRow}}|<font size="-2"> SIMP_FINITE_INTEGER </font>||<math> \finite (\intg ) \;\;\defi\;\; \bfalse </math>|| || A | |||
{{RRRow}}|<font size="-2"> SIMP_FINITE_LAMBDA </font>||<math> \finite (\lambda x \qdot P \mid E) \;\;\defi\;\; \finite (\{ x \qdot P \mid x\} ) </math>|| || A | |||
{{RRRow}}|<font size="-2"> SIMP_TYPE_EQUAL_EMPTY </font>||<math> \mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|<font size="-2"> SIMP_TYPE_EQUAL_EMPTY </font>||<math> \mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|<font size="-2"> SIMP_TYPE_IN </font>||<math> t \in \mathit{Ty} \;\;\defi\;\; \btrue </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|<font size="-2"> SIMP_TYPE_IN </font>||<math> t \in \mathit{Ty} \;\;\defi\;\; \btrue </math>|| where <math>\mathit{Ty}</math> is a type expression || A |
Revision as of 10:18, 30 January 2009
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
SIMP_SPECIAL_AND_BTRUE | A | |||
SIMP_SPECIAL_AND_BFALSE | A | |||
SIMP_MULTI_AND | A | |||
SIMP_MULTI_AND_NOT | A | |||
SIMP_SPECIAL_OR_BTRUE | A | |||
SIMP_SPECIAL_OR_BFALSE | A | |||
SIMP_MULTI_OR | A | |||
SIMP_MULTI_OR_NOT | A | |||
SIMP_SPECIAL_IMP_BTRUE_R | A | |||
SIMP_SPECIAL_IMP_BTRUE_L | A | |||
SIMP_SPECIAL_IMP_BFALSE_R | A | |||
SIMP_SPECIAL_IMP_BFALSE_L | A | |||
SIMP_MULTI_IMP | A | |||
SIMP_MULTI_IMP_OR | A | |||
SIMP_MULTI_IMP_AND_NOT_R | A | |||
SIMP_MULTI_IMP_AND_NOT_L | A | |||
SIMP_MULTI_EQV | A | |||
SIMP_MULTI_EQV_NOT | A | |||
SIMP_MULTI_EQV_NOT_NOT | A | |||
SIMP_SPECIAL_NOT_BTRUE | A | |||
SIMP_SPECIAL_NOT_BFALSE | A | |||
SIMP_NOT_NOT | A | |||
SIMP_NOTEQUAL | A | |||
SIMP_NOTIN | A | |||
SIMP_NOTSUBSET | A | |||
SIMP_NOTSUBSETEQ | A | |||
SIMP_NOT_LE | A | |||
SIMP_NOT_GE | A | |||
SIMP_NOT_LT | A | |||
SIMP_NOT_GT | A | |||
SIMP_SPECIAL_NOT_EQUAL_FALSE_R | A | |||
SIMP_SPECIAL_NOT_EQUAL_FALSE_L | A | |||
SIMP_SPECIAL_NOT_EQUAL_TRUE_R | A | |||
SIMP_SPECIAL_NOT_EQUAL_TRUE_L | A | |||
SIMP_FORALL_AND | A | |||
SIMP_EXIST_AND | A | |||
SIMP_FORALL | A | |||
SIMP_EXIST | A | |||
SIMP_MULTI_EQUAL | A | |||
SIMP_MULTI_NOTEQUAL | A | |||
SIMP_EQUAL_MAPSTO | A | |||
SIMP_EQUAL_SING | A | |||
SIMP_SPECIAL_EQUAL_TRUE | A | |||
SIMP_TYPE_SUBSETEQ | where is a type expression | A | ||
SIMP_SUBSETEQ_SING | where is a single expression | A | ||
SIMP_SPECIAL_SUBSETEQ | A | |||
SIMP_MULTI_SUBSETEQ | A | |||
SIMP_SUBSETEQ_BUNION | A | |||
SIMP_SUBSETEQ_BINTER | A | |||
DERIV_SUBSETEQ_BUNION | M | |||
DERIV_SUBSETEQ_BINTER | M | |||
SIMP_SUBSET_BUNION | A | |||
SIMP_SUBSET_BINTER | A | |||
SIMP_SPECIAL_IN | A | |||
SIMP_MULTI_IN | A | |||
SIMP_IN_SING | A | |||
SIMP_MULTI_SETENUM | A | |||
SIMP_SPECIAL_BINTER | A | |||
SIMP_TYPE_BINTER | where is a type expression | A | ||
SIMP_MULTI_BINTER | A | |||
SIMP_MULTI_EQUAL_BINTER | A | |||
SIMP_SPECIAL_BUNION | A | |||
SIMP_TYPE_BUNION | where is a type expression | A | ||
SIMP_MULTI_BUNION | A | |||
SIMP_MULTI_EQUAL_BUNION | A | |||
SIMP_MULTI_SETMINUS | A | |||
SIMP_SPECIAL_SETMINUS_R | A | |||
SIMP_SPECIAL_SETMINUS_L | A | |||
SIMP_TYPE_SETMINUS | where is a type expression | A | ||
SIMP_TYPE_SETMINUS_SETMINUS | where is a type expression | A | ||
SIMP_TYPE_KUNION | where is a type expression and | A | ||
SIMP_KUNION_POW | A | |||
SIMP_KUNION_POW1 | A | |||
SIMP_SPECIAL_KUNION | A | |||
SIMP_SPECIAL_KUNION | A | |||
SIMP_SPECIAL_KINTER | A | |||
SIMP_TYPE_KINTER | where is a type expression | A | ||
SIMP_SPECIAL_POW | A | |||
SIMP_SPECIAL_POW1 | A | |||
SIMP_SPECIAL_CPROD_R | A | |||
SIMP_SPECIAL_CPROD_L | A | |||
SIMP_COMPSET_EQUAL | where non free in | A | ||
SIMP_COMPSET_IN | where non free in | A | ||
SIMP_SPECIAL_COMPSET_BFALSE | A | |||
SIMP_SPECIAL_COMPSET_BTRUE | where the type od is | A | ||
SIMP_SUBSETEQ_COMPSET_L | where non free in | A | ||
SIMP_SPECIAL_EQUAL_COMPSET | A | |||
SIMP_IN_COMPSET | A | |||
SIMP_SUBSETEQ_COMPSET_R | where non free in | A | ||
SIMP_SPECIAL_OVERL | A | |||
SIMP_MULTI_OVERL | A | |||
SIMP_TYPE_OVERL_CPROD | where is a type expression | A | ||
SIMP_SPECIAL_KBOOL_BTRUE | A | |||
SIMP_SPECIAL_KBOOL_BFALSE | A | |||
DISTRI_SUBSETEQ_BUNION_SING | where is a single expression | M | ||
SIMP_SPECIAL_FINITE | A | |||
SIMP_FINITE_SETENUM | A | |||
SIMP_FINITE_BUNION | A | |||
SIMP_FINITE_POW | A | |||
DERIV_FINITE_CPROD | A | |||
SIMP_FINITE_CONVERSE | A | |||
SIMP_FINITE_UPTO | A | |||
SIMP_FINITE_BINTER_L | M | |||
SIMP_FINITE_BINTER_R | M | |||
SIMP_FINITE_SETMINUS | M | |||
SIMP_FINITE_DOMRES | M | |||
SIMP_FINITE_RANRES | M | |||
SIMP_FINITE_DOMSUB | M | |||
SIMP_FINITE_RANSUB | M | |||
SIMP_FINITE_RELIMAGE | M | |||
SIMP_FINITE_CPROD | M | |||
SIMP_FINITE_OVERL | M | |||
SIMP_FINITE_REL | M | |||
SIMP_FINITE_FCOMP | M | |||
SIMP_FINITE_BCOMP | M | |||
SIMP_FINITE_DPROD | M | |||
SIMP_FINITE_PPROD | M | |||
SIMP_FINITE_COMPSET | where non free in | M | ||
SIMP_FINITE_RAN | M | |||
SIMP_FINITE_DOM | M | |||
SIMP_FINITE_QUNION | M | |||
SIMP_FINITE_QINTER | M | |||
SIMP_FINITE_ID | A | |||
SIMP_FINITE_NATURAL | A | |||
SIMP_FINITE_NATURAL1 | A | |||
SIMP_FINITE_INTEGER | A | |||
SIMP_FINITE_LAMBDA | A | |||
SIMP_TYPE_EQUAL_EMPTY | where is a type expression | A | ||
SIMP_TYPE_IN | where is a type expression | A | ||
SIMP_SPECIAL_FORALL_BTRUE | A | |||
SIMP_SPECIAL_FORALL_BFALSE | A | |||
SIMP_SPECIAL_EXIST_BTRUE | A | |||
SIMP_SPECIAL_EXIST_BFALSE | A | |||
SIMP_SPECIAL_EQV_BTRUE | A | |||
SIMP_SPECIAL_EQV_BFALSE | A | |||
SIMP_SPECIAL_SUBSET_R | A | |||
SIMP_SPECIAL_SUBSET_L | A | |||
SIMP_TYPE_SUBSET_L | where is a type expression | A | ||
SIMP_MULTI_SUBSET | A | |||
DISTRI_AND_OR | M | |||
DISTRI_OR_AND | M | |||
DEF_OR | M | |||
DERIV_IMP | M | |||
DERIV_IMP_IMP | M | |||
DISTRI_IMP_AND | M | |||
DISTRI_IMP_OR | M | |||
DEF_EQV | M | |||
DISTRI_NOT_AND | M | |||
DISTRI_NOT_OR | M | |||
DERIV_NOT_IMP | M | |||
DERIV_NOT_FORALL | M | |||
DERIV_NOT_EXIST | M | |||
DEF_SPECIAL_NOT_EQUAL | M | |||
DEF_IN_MAPSTO | M | |||
DEF_IN_POW | M | |||
DEF_SUBSETEQ | M | |||
DEF_IN_BUNION | M | |||
DEF_IN_BINTER | M | |||
DEF_IN_SETMINUS | M | |||
DEF_IN_SETENUM | M | |||
DEF_IN_KUNION | M | |||
DEF_IN_QUNION | M | |||
DEF_IN_KINTER | M | |||
DEF_IN_QINTER | M | |||
DISTRI_BUNION_BINTER | M | |||
DISTRI_BINTER_BUNION | M | |||
DISTRI_BINTER_SETMINUS | M | |||
DISTRI_SETMINUS_BUNION | M | |||
DERIV_TYPE_SETMINUS_BINTER | where is a type expression | M | ||
DERIV_TYPE_SETMINUS_BUNION | where is a type expression | M | ||
DERIV_TYPE_SETMINUS_SETMINUS | where is a type expression | M | ||
DISTRI_CPROD_BINTER | M | |||
DISTRI_CPROD_BUNION | M | |||
DISTRI_CPROD_SETMINUS | M | |||
DERIV_SUBSETEQ | where is the type of and | M | ||
DERIV_EQUAL | where is the type of and | M | ||
DERIV_SUBSETEQ_SETMINUS_L | M | |||
DERIV_SUBSETEQ_SETMINUS_R | M |