Tasking Event-B Overview for D32

From Event-B
Revision as of 10:59, 26 January 2011 by imported>Andy (→‎Control Constructs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Tasking Event-B for D32

The following text can be read in conjunction with the slides[1] from the Deploy Plenary Meeting - Zurich 2010.

Tasking Event-B can be viewed as an extension of the existing Event-B language. We use the existing approaches of refinement and decomposition to structure a project that is suitable for a Tasking Development. During the modelling phase parameters are introduced to facilitate decomposition. As a result of the decomposition process, parameters become part of the interface that enables event synchronization. We make use of this interface and add information (see #Implementing Events) to facilitate code generation. The tasking extension consists of the constructs in the following table.

Construct Options
Machine Type DeclaredTask, AutoTask, SharedMachine
Control Sequence, Loop, Branch, EventSynch
Task Type Periodic(n), Triggered, Repeating, OneShot
Priority -
Event Type Branch, Loop, ProcedureDef, ProcedureSynch
Parameter Type ActualIn, ActualOut, FormalIn, FormalOut

Tasking Developments

A Tasking Development is modelling component that is generated programmatically, at the direction of the user. The Tasking Development consists of a number of machines (and perhaps associated contexts). We make use of the Event-B EMF extension mechanism [2], which allows addition of new constructs to a model. The machines in the Tasking Development are extended with the constructs shown in the table, and may be viewed as keywords in a textual representation of the language. With extensions added, a Tasking Development can be translated to a common language model for mapping to implementation source code. There is also a translator that constructs new machines/contexts modelling the implementation, and these should refine/extend the existing elements of the Event-B project.

Tasking Machines

The following constructs relate only to Tasking Machines, and provide implementation details. Timing of periodic tasks is not modelled formally. Tasking Machines are related to the concept of an Ada task. These can be implemented in Ada using tasks, in C using the pthread library C, or in Java using threads.

  • Tasking Machines may be characterised by the following types:
    • AutoTasks - Singleton Tasks.
    • Declared tasks - (Not currently used) A task template relating to an Ada tasktype declaration.
    • TaskType - Defines the scheduling, cycle and lifetime of a task. i.e. one-shot periodic or triggered. The period of a task is specified in milliseconds.
    • Priority - An integer value is supplied, the task with the highest value priority takes precedence when being scheduled. For the demonstrator tool the default priority is 5.

Auto Tasks are tasks that will be declared and defined in the Main procedure of the implementation. The effect of this is that the Auto Tasks are created when the program first loads, and then activated (made ready to run) before the Main procedure body runs.

Shared Machines

A Shared Machine corresponds to the concept of a protected resource, such as a monitor. They may be implemented in Ada as a Protected Object, in C using mutex locking, or in Java as a monitor.

  • Applied to the Shared Machine we have:
    • A SharedMachine keyword that identifies a machine as a Shared Machine.

Implementation Specifics

At the stage where we are considering how to implement the Event-B development we need to think about controlling the flow of execution, and how events should be implemented. The following section describes the constructs that we have introduced to facilitate this.

Control Constructs

Each Tasking Machine has a task body which contains the flow control (algorithmic constructs).

  • We have the following constructs available in the Tasking Machine body:
    • Sequence - for imposing an order on events.
    • Branch - choice between a number of mutually exclusive events.
    • Loop - event repetition while it's guard remains true.
    • Event Synchronisation - synchronization between an event in a Tasking Machine and an event in a Shared Machine. This allows specification of updates in either a task or shared machine, or parallel updates in both. This also provides the mechanism for parameter passing between a task and shared machine.
    • Event wrappers - The event synchronization construct is contained in an event wrapper.

Implementing Events

An event's role in the implementation is identified using the following extensions which are added to the event. Events used in task bodies are 'references' that make use of existing event definitions from the abstract development. The events are extended. to assist with translation, with a keyword indicating their role in the implementation.

  • Event implementation.
    • Branch - In essence a task's event is split in the implementation; guards are mapped to branch conditions and actions are mapped to the branch body. If the branch refers to a Shared Machine event (procedureDef) then this is mapped to a simple procedure call.
    • Loop - The task's event guard maps to the loop condition and actions to to loop body. If the loop refers to a Shared Machine event then it is mapped to a simple procedure call.
    • ProcedureSych - This usually indicates to the translator that the event maps to a subroutine, but an event in a task may not require a subroutine implementation if its role is simply to provide parameters for a procedure call.
    • ProcedureDef - Identifies an event that maps to a (potentially blocking) subroutine definition. Event guards are implemented as a conditional wait; in Ada this is an entry barrier, and in C may use a pthread condition variable .

In an implementation, when an subroutine is defined, its formal parameters are replaced by actual parameter values at run-time. To assist the code generator we extend the Event-B parameters. We identify formal and actual parameters in the implementation, and add the following keywords to the event parameters, as follows:

  • Event parameter types
    • FormalIn or FormalOut - event parameters are extended with the ParameterType construct. Extension with formal parameters indicates a mapping to formal parameters in the implementation.
    • ActualIn or ActualOut - Extension with an actual parameter indicates a mapping to an actual parameter in the implementation.

References