Difference between pages "D45 Prover Enhancement" and "Membership in Goal"

From Event-B
(Difference between pages)
Jump to navigationJump to search
imported>Nicolas
 
imported>Billaude
 
Line 1: Line 1:
= Overview =
+
= Objective =
* Two tasks concerned the prover performance from the core platform: the addition of rewriting and inference rules, and the addition of a mechanism to allow the customization and the parametrization or combination of tactics. While the addition of rewriting and inference rules has always been a regular task to enhance the Rodin integrated prover during DEPLOY lifetime, a new way to manage tactics has been implemented. In fact, the user is now able to define various types of tactics called 'profiles' which could be customized and parameterized tactics to discharge some specific proof obligations.
 
* {{TODO}} An overview of the contribution about the ProB Disprover (Daniel Plagge, Jens Bendiposto)
 
* The SMT Solvers plug-in allowing to use the SMT solvers within Rodin is an effective alternative to the Atelier-B provers, particularly when reasoning on linear arithmetic. {{TODO}} (Laurent Voisin, Yoann Guyot)
 
  
= Motivations =
+
This page describes the design of the reasoner MembershipGoal and its associated tactic MembershipGoalTac.<br>
== New rewriting and inference rules ==
+
This reasoner discharges sequent whose goal denotes a membership which can be inferred from hypotheses. Here an basic example of what it discharges :<br>
In an Event-B development, more than 60% of the time is spent on proofs. It has been a continuous aim to increase the number of automatically discharged proof obligations (POs) by improving the capabilities of the integrated sequent prover through the addition of rewriting and inference rules. These rules were provided through tactics, or existing or newly created. These tactics were automatic, or manual, or sometimes both. Providing new proving rules, even if it sometimes does not increase directly the number of automatically discharged POs aims to help the user to interactively discharge them and spare his time.
+
<math>H,\quad x\in S,\quad S\subset T,\quad T\subseteq U \quad\vdash x\in U</math>
  
== Advanced Preferences for Auto-tactics ==
+
= Analysis =
  
Sometimes, the automatic prover fails because the order of the applied tactics doesn't lead to discharge the proof obligation. Previously the ordering of tactics was lost at each change. Another issue is to have more than one possibility to combine the tactics. Indeed, various combinators called ''tacticals'' allow to combine tactics in a specific manner, thus providing a sort of tactic arithmetic. The advanced preferences for auto-tactics solved these two issues.
+
Such sequent are proved by PP and ML. But, these provers have both drawbacks :
 +
*All the visible are added as needed hypotheses, which is most of the time not the case.
 +
*They take quite consequent time to prove it (even with the basic example given here above, the difference in time execution is noticeable).
 +
*If there are too many hypotheses, or if the expression of the <math>x</math> is too complicated, they may not prove it.
 +
This is particularly true when in the list of inclusion expressions of each side of the relation are not equal. For example : <math>H,\quad a\in S,\quad S\subset T_1\cap T_2,\quad T_1\cup T_3\subseteq  U\quad\vdash a\in U</math>
 +
<p>
 +
Such a reasoner contributes to prove more Proof Obligations automatically, faster and with fewer needed hypotheses which makes proof rule more legible and proof replay less sensitive to modifications.
  
== Isabelle Plug-in ==
+
= Design Decision =
{{TODO}} ''To be completed by Matthias Schmaltz''
 
== ProB Disprover ==
 
{{TODO}} ''Daniel Plagge, Jens Bendiposto''
 
== SMT Solver Integration ==
 
{{TODO}} ''Laurent Voisin'' & ''Yoann Guyot''
 
  
= Choices / Decisions =
+
== Tactic ==
== New rewriting and inference rules ==
 
{{TODO}} ''To be completed by Laurent Voisin''
 
== Advanced Preferences for Auto-tactics ==
 
{{TODO}} ''To be completed by Nicolas Beauger''
 
Since Rodin 2.1, simple tactic profiles have been added. They allow to persiste and set specifically for some project various ordered ways to apply the basic tactics. Since Rodin 2.3, tacticals and parameterisation have been added to the profiles increasing even more the potential of such proving feature. The combinators allow for exemple to loop on a subset of tactics, including existing profiles, and the parameterisation allows for example to set a timeout on external provers such as AtelierB P1.
 
  
== Isabelle Plug-in ==
+
This part explains how the tactic (MembershipGoalTac) associated to the reasoner MembershipGoal is working.
{{TODO}} ''To be completed by Matthias Schmaltz''
+
=== Goal ===
== ProB Disprover ==
+
The tactic (as the reasoner) should works only on goals such as :
{{TODO}} ''Daniel Plagge, Jens Bendiposto''
+
*<math>\cdots~\in~\cdots</math>
== SMT Solver Integration ==
+
For examples :
{{TODO}} ''Laurent Voisin'' & ''Yoann Guyot''
+
*<math>f(x)\in g\otimes h</math>
 +
*<math>x\in A\cprod\left(B\cup C\right)</math>
 +
*<math>x\mapsto y\in A\cprod B</math>
 +
In the latter case, the reasoner won't try to prove that ''x'' belongs to ''A'' and ''y'' belongs to ''B'', but that the mapplet belong to the Cartesian product.
 +
=== Hypotheses ===
 +
Now we have to find hypotheses leading to discharge the sequent. To do so, the tactic recovers two kinds of hypotheses :
 +
#the ones related to the left member of the goal <math>\left( x\in S\right)</math> (this is the start point):
 +
#*<math>x\in \cdots</math>
 +
#*<math>\cdots\mapsto x\mapsto\cdots\in\cdots</math>
 +
#*<math>\left\{\cdots, x,\cdots\right\}=\cdots</math>
 +
#*<math>\left\{\cdots, \cdots\mapsto x\mapsto\cdots,\cdots\right\}=\cdots</math>
 +
#the ones denoting inclusion (all but the ones matching the description of the first point) :
 +
#*<math>\cdots\subset\cdots</math>
 +
#*<math>\cdots\subseteq\cdots</math>
 +
#*<math>\cdots=\cdots</math>
 +
Then, it will search a link between those hypotheses so that the sequent can be discharged.
 +
=== Find a path ===
 +
Now that we recovered all the hypotheses that could be useful for the reasoner, it remains to find a path among the hypotheses leading to discharge the sequent. Depending on the relations on each side of the inclusion, we will act differently. <math>f</math> always represent an expression (may be a domain, a range, etc.).
 +
#The following sequent is provable because <math>f\subseteq \varphi (f)</math>.
 +
#*<math>x\in f,\quad \varphi (f)\subseteq g\quad\vdash\quad x\in g</math>
 +
#*<math>\varphi (f) = f\quad\mid\quad f\cup h \quad\mid\quad h\cup f \quad\mid\quad h\ovl f</math>
 +
#The following sequent is provable because <math>\psi (f)\subseteq f</math>.
 +
#*<math>x\in \psi (f),\quad f\subseteq g\quad\vdash\quad x\in g</math>
 +
#*<math>\psi (f) = f\quad\mid\quad f\cap h \quad\mid\quad h\cap f \quad\mid\quad f\setminus h \quad\mid\quad f\ransub A \quad\mid\quad f\ranres A \quad\mid\quad A\domsub f \quad\mid\quad A\domres f</math>
 +
#We can generalized the first two points. This is the Russian dolls system. We can easily prove a sequent with multiple inclusions by going from hypothesis to hypothesis.
 +
#*<math>x\in \psi (f),\quad \varphi (f)\subseteq g\quad\vdash\quad x\in g</math>
 +
#For some relations, [[#positions|positions]] are needed to be known to continue to find hypotheses, but it is not always necessary.
 +
#*<math>x\mapsto y\in f,\quad f\subseteq A\cprod B\quad\vdash\quad x\in A</math>
 +
#*<math>x\in dom(f),\quad f\subseteq A\cprod B\quad\vdash\quad x\in A</math>
 +
#*<math>x\in ran(f),\quad f\subseteq A\cprod B\quad\vdash\quad x\in B</math>
  
= Available Documentation =
+
By using these inclusion and rewrites, it tries to find a path among the recovered hypotheses. Every one of those should only be used once, avoiding possible infinite loop <math>\left(A\subseteq B,\quad B\subseteq A\right)</math>. Among all paths that lead to discharge the sequent, the tactic give the first it finds. Moreover, so that the reasoner does not do the same work as the tactic of writing new hypothesis, it gives all needed hypotheses and added hypotheses in the input.
* {{TODO}} Links for New rewriting and inference rules
 
* {{TODO}} Links for Advanced Preferences for Auto-tactics
 
* {{TODO}} Links for Isabelle Plug-in
 
* {{TODO}} Links for ProB Disprover
 
* {{TODO}} Links for SMT Solver Integration
 
  
= Status =
+
== Reasoner ==
== New rewriting and inference rules ==
 
{{TODO}} ''To be completed by Laurent Voisin''
 
== Advanced Preferences for Auto-tactics ==
 
{{TODO}} ''To be completed by Nicolas Beauger''
 
== Isabelle Plug-in ==
 
{{TODO}} ''To be completed by Matthias Schmaltz''
 
== ProB Disprover ==
 
{{TODO}} ''Daniel Plagge, Jens Bendiposto''
 
== SMT Solver Integration ==
 
{{TODO}} ''Laurent Voisin'' & ''Yoann Guyot''
 
  
[[Category:D45 Deliverable]]
+
The way the reasoner must work is still in discussion.
 +
 
 +
= Implementation =
 +
 
 +
This section explain how the tactic has bee implemented.
 +
 
 +
=== Positions ===
 +
As it was said, we may sometimes need the position. It is represented by an array of integer. Here are the possible values the array contains (atomic positions) :
 +
* '''''kdom''''' : it corresponds to the domain.
 +
**<math>\left[A\cprod B\right]_{pos\;=\;kdom} = A</math>
 +
**<math>\left[x\mapsto y\right]_{pos\;=\;kdom} = x</math>
 +
**<math>\left[g\right]_{pos\;=\;kdom} = dom(g)</math>
 +
* '''''kran''''' : it corresponds to the domain.
 +
**<math>\left[A\cprod B\right]_{pos\;=\;kran} = B</math>
 +
**<math>\left[x\mapsto y\right]_{pos\;=\;kran} = y</math>
 +
**<math>\left[g\right]_{pos\;=\;kran} = ran(g)</math>
 +
* '''''leftDProd''''' : it corresponds to the left member of a direct product.
 +
**<math>\left[f\otimes g\right]_{pos\;=\;leftDProd} = f</math>
 +
**<math>\left[A\cprod \left(B\cprod C\right)\right]_{pos\;=\;leftDProd} = A\cprod B</math>
 +
* '''''rightDProd''''' : it corresponds to the right member of a direct product
 +
**<math>\left[f\otimes g\right]_{pos\;=\;rightDProd} = g</math>
 +
**<math>\left[A\cprod\left(B\cprod C\right)\right]_{pos\;=\;rightDProd} = A\cprod C</math>
 +
* '''''leftPProd''''' : it corresponds to the left member of a parallel product
 +
**<math>\left[f\parallel g\right]_{pos\;=\;leftPProd} = f</math>
 +
**<math>\left[\left(A\cprod B\right)\cprod\left(C\cprod D\right)\right]_{pos\;=\;leftPProd} = A\cprod C</math>
 +
* '''''rightPProd''''' : it corresponds to the right member of a parallel product
 +
**<math>\left[f\parallel g\right]_{pos\;=\;rightPProd} = g</math>
 +
**<math>\left[\left(A\cprod B\right)\cprod\left(C\cprod D\right)\right]_{pos\;=\;rightPProd} = B\cprod D</math>
 +
* '''''converse''''' : it corresponds to the child of an inverse
 +
**<math>\left[f^{-1}\right]_{pos\;=\;converse}=f</math>
 +
**<math>\left[A\cprod B\right]_{pos\;=\;converse} = B\cprod A</math>
 +
For example, the following expressions at the given positions are equivalent.
 +
:<math>\left[f\otimes\left(\left(A\cprod dom(g)\right)\parallel g\right)\right]_{pos\;=\;\left[rightDProd,\;leftPProd,\;kran\right]} = \left[\left(A\cprod dom(g)\right)\parallel g\right]_{pos\;=\;\left[leftPProd,\;kran\right]} = \left[A\cprod dom(g)\right]_{pos\;=\;\left[kran\right]} = \left[dom(g)\right]_{pos\;=\;\left[~\right]} = \left[g\right]_{pos\;=\;\left[kdom\right]}</math>
 +
 
 +
Some combinations of atomic positions are equivalent. In order to simplify comparison between positions, they are normalized :
 +
*<math>ran(f^{-1}) = dom(f)\quad\limp\quad \left[f\right]_{pos \;=\; \left[converse,~kran\right]} = \left[f\right]_{pos\;=\;\left[kdom\right]}</math>
 +
*<math>dom(f^{-1}) = ran(f)\quad\limp\quad \left[f\right]_{pos \;=\; \left[converse,~kdom\right]} = \left[f\right]_{pos\;=\;\left[kran\right]}</math>
 +
*<math>\left(f^{-1}\right)^{-1} = f\quad\limp\quad \left[f\right]_{pos \;=\; \left[converse,~converse\right]} = \left[f\right]_{pos\;=\;\left[~\right]}</math>
 +
 
 +
=== Goal ===
 +
 
 +
As explained in the design decision part, goal is checked. If it matches the description here above <math>\left(x\in S\right)</math> then ''x'' is stored in an attribute. Moreover, from the set ''S'', we compute every pair ''expression'' & ''position'' equivalent to it. For example, from the set <math>dom(ran(ran(g)))</math>, the map will be computed :
 +
*<math>dom(ran(ran(g)))\;\mapsto\;[\;]</math>
 +
*<math>ran(ran(g))\;\mapsto\;[0]</math>
 +
*<math>ran(g)\;\mapsto\;[1,~0]</math>
 +
*<math>g\;\mapsto\;[1,~1,~0]</math>
 +
Only ''range'', ''domain'' and ''converse'' can be taken into account to get all the possibles goals.
 +
 
 +
A pair (expression ; position) is said equal to the goal if and only if there exists a pair equivalent to the goal (GoalExp ; GoalPos) and a pair equivalent to the given pair (Exp ; Pos) such as ''Pos = GoalPos'' and ''Exp'' is contained in ''GoalExp''.
 +
 
 +
=== Hypotheses ===
 +
 
 +
As explained in the design decision part, there are two kinds of hypotheses which are recovered. But when hypotheses related to the left member of the goal <math>\left(x\in S\right)</math> are stored, the position of ''x'' is also record. Then, if there is an hypothesis such as <math>\left\{\cdots\;,\;y\mapsto x\mapsto z\;,\;m\mapsto x\;,\;\cdots\right\} = A</math>, then this hypothesis is mapped to the positions <math>\left\{\left[0,~1\right],~\left[1\right]\right\}</math>.
 +
 
 +
=== Find a path ===
 +
 
 +
Let's considered the sequent with the following goal : <math>x\in V</math>.
 +
We start with the hypotheses which have a connection with the goal's member. Such a hypothesis gives two informations : the position <math>pos</math> and the set <math>S</math> as explained in [[#Hypotheses|hypotheses]]. Then, for each equivalent pair to these one <math>\left(S', pos'\right)</math>, we compute set containing <math>S'</math> ([[#Design Decision#Tactic#Find a path| Find a path 2.]]). For every new pair, we test if it is contained in the goal.
 +
 
 +
To be continued.
 +
 
 +
= Untreated cases =
 +
 
 +
Some cases are not treated. Further enhancement may be provided for some.
 +
*<math>x\in A\cup B,\quad A\cup B\cup C\subseteq D\quad\vdash\quad x\in D</math>
 +
*<math>x\in f,\quad f\in A\;op\;B\quad\vdash\quad x\in A\cprod B</math>
 +
*<math>f\ovl \left\{x\mapsto y\right\}\subseteq A\cprod B\quad\vdash\quad x\in A</math>
 +
*<math>x\in f\otimes g,\quad f\subseteq A\cprod B,\quad g\subseteq C\cprod D\quad\vdash\quad x\in (A\cprod C)\cprod(B\cprod D)</math>
 +
*<math>x\in f\otimes g,\quad f\subseteq h\quad\vdash\quad x\in h\otimes g</math>
 +
*<math>x\in \left\{a,~b,~c\right\},\quad\left\{a,~b,~c,~d,~e,~f\right\}\subseteq D\quad\vdash\quad x\in D</math>
 +
*<math>x\in A\cprod B,\quad A\subseteq C\quad\vdash\quad x\in C\cprod B</math>
 +
*<math>x\in dom(f)\cap A\quad\vdash\quad x\in dom(A\domres f)</math>
 +
*<math>x\in ran(f)\cap A\quad\vdash\quad x\in ran(f\ranres A)</math>
 +
*<math>x\in \quad\vdash\quad</math>
 +
*<math>\quad\vdash\quad</math>
 +
*<math>\quad\vdash\quad</math>
 +
*<math>\quad\vdash\quad</math>
 +
*:<math>\bigl(</math> where <math>op_1</math> and <math>op_2</math> are ones of :<math>\quad\rel, \trel, \srel, \strel, \pfun, \tfun, \pinj, \tinj, \psur, \tsur, \tbij\bigr)</math>
 +
 
 +
[[Category:Design proposal]]

Revision as of 13:28, 9 August 2011

Objective

This page describes the design of the reasoner MembershipGoal and its associated tactic MembershipGoalTac.
This reasoner discharges sequent whose goal denotes a membership which can be inferred from hypotheses. Here an basic example of what it discharges :
H,\quad x\in S,\quad S\subset T,\quad T\subseteq U \quad\vdash x\in U

Analysis

Such sequent are proved by PP and ML. But, these provers have both drawbacks :

  • All the visible are added as needed hypotheses, which is most of the time not the case.
  • They take quite consequent time to prove it (even with the basic example given here above, the difference in time execution is noticeable).
  • If there are too many hypotheses, or if the expression of the x is too complicated, they may not prove it.

This is particularly true when in the list of inclusion expressions of each side of the relation are not equal. For example : H,\quad a\in S,\quad S\subset T_1\cap T_2,\quad T_1\cup T_3\subseteq  U\quad\vdash a\in U

Such a reasoner contributes to prove more Proof Obligations automatically, faster and with fewer needed hypotheses which makes proof rule more legible and proof replay less sensitive to modifications.

Design Decision

Tactic

This part explains how the tactic (MembershipGoalTac) associated to the reasoner MembershipGoal is working.

Goal

The tactic (as the reasoner) should works only on goals such as :

  • \cdots~\in~\cdots

For examples :

  • f(x)\in g\otimes h
  • x\in A\cprod\left(B\cup C\right)
  • x\mapsto y\in A\cprod B

In the latter case, the reasoner won't try to prove that x belongs to A and y belongs to B, but that the mapplet belong to the Cartesian product.

Hypotheses

Now we have to find hypotheses leading to discharge the sequent. To do so, the tactic recovers two kinds of hypotheses :

  1. the ones related to the left member of the goal \left( x\in S\right) (this is the start point):
    • x\in \cdots
    • \cdots\mapsto x\mapsto\cdots\in\cdots
    • \left\{\cdots, x,\cdots\right\}=\cdots
    • \left\{\cdots, \cdots\mapsto x\mapsto\cdots,\cdots\right\}=\cdots
  2. the ones denoting inclusion (all but the ones matching the description of the first point) :
    • \cdots\subset\cdots
    • \cdots\subseteq\cdots
    • \cdots=\cdots

Then, it will search a link between those hypotheses so that the sequent can be discharged.

Find a path

Now that we recovered all the hypotheses that could be useful for the reasoner, it remains to find a path among the hypotheses leading to discharge the sequent. Depending on the relations on each side of the inclusion, we will act differently. f always represent an expression (may be a domain, a range, etc.).

  1. The following sequent is provable because f\subseteq \varphi (f).
    • x\in f,\quad \varphi (f)\subseteq g\quad\vdash\quad x\in g
    • \varphi (f) = f\quad\mid\quad f\cup h \quad\mid\quad h\cup f \quad\mid\quad h\ovl f
  2. The following sequent is provable because \psi (f)\subseteq f.
    • x\in \psi (f),\quad f\subseteq g\quad\vdash\quad x\in g
    • \psi (f) = f\quad\mid\quad f\cap h \quad\mid\quad h\cap f \quad\mid\quad f\setminus h \quad\mid\quad f\ransub A \quad\mid\quad f\ranres A \quad\mid\quad A\domsub f \quad\mid\quad A\domres f
  3. We can generalized the first two points. This is the Russian dolls system. We can easily prove a sequent with multiple inclusions by going from hypothesis to hypothesis.
    • x\in \psi (f),\quad \varphi (f)\subseteq g\quad\vdash\quad x\in g
  4. For some relations, positions are needed to be known to continue to find hypotheses, but it is not always necessary.
    • x\mapsto y\in f,\quad f\subseteq A\cprod B\quad\vdash\quad x\in A
    • x\in dom(f),\quad f\subseteq A\cprod B\quad\vdash\quad x\in A
    • x\in ran(f),\quad f\subseteq A\cprod B\quad\vdash\quad x\in B

By using these inclusion and rewrites, it tries to find a path among the recovered hypotheses. Every one of those should only be used once, avoiding possible infinite loop \left(A\subseteq B,\quad B\subseteq A\right). Among all paths that lead to discharge the sequent, the tactic give the first it finds. Moreover, so that the reasoner does not do the same work as the tactic of writing new hypothesis, it gives all needed hypotheses and added hypotheses in the input.

Reasoner

The way the reasoner must work is still in discussion.

Implementation

This section explain how the tactic has bee implemented.

Positions

As it was said, we may sometimes need the position. It is represented by an array of integer. Here are the possible values the array contains (atomic positions) :

  • kdom : it corresponds to the domain.
    • \left[A\cprod B\right]_{pos\;=\;kdom} = A
    • \left[x\mapsto y\right]_{pos\;=\;kdom} = x
    • \left[g\right]_{pos\;=\;kdom} = dom(g)
  • kran : it corresponds to the domain.
    • \left[A\cprod B\right]_{pos\;=\;kran} = B
    • \left[x\mapsto y\right]_{pos\;=\;kran} = y
    • \left[g\right]_{pos\;=\;kran} = ran(g)
  • leftDProd : it corresponds to the left member of a direct product.
    • \left[f\otimes g\right]_{pos\;=\;leftDProd} = f
    • \left[A\cprod \left(B\cprod C\right)\right]_{pos\;=\;leftDProd} = A\cprod B
  • rightDProd : it corresponds to the right member of a direct product
    • \left[f\otimes g\right]_{pos\;=\;rightDProd} = g
    • \left[A\cprod\left(B\cprod C\right)\right]_{pos\;=\;rightDProd} = A\cprod C
  • leftPProd : it corresponds to the left member of a parallel product
    • \left[f\parallel g\right]_{pos\;=\;leftPProd} = f
    • \left[\left(A\cprod B\right)\cprod\left(C\cprod D\right)\right]_{pos\;=\;leftPProd} = A\cprod C
  • rightPProd : it corresponds to the right member of a parallel product
    • \left[f\parallel g\right]_{pos\;=\;rightPProd} = g
    • \left[\left(A\cprod B\right)\cprod\left(C\cprod D\right)\right]_{pos\;=\;rightPProd} = B\cprod D
  • converse : it corresponds to the child of an inverse
    • \left[f^{-1}\right]_{pos\;=\;converse}=f
    • \left[A\cprod B\right]_{pos\;=\;converse} = B\cprod A

For example, the following expressions at the given positions are equivalent.

\left[f\otimes\left(\left(A\cprod dom(g)\right)\parallel g\right)\right]_{pos\;=\;\left[rightDProd,\;leftPProd,\;kran\right]} = \left[\left(A\cprod dom(g)\right)\parallel g\right]_{pos\;=\;\left[leftPProd,\;kran\right]} = \left[A\cprod dom(g)\right]_{pos\;=\;\left[kran\right]} = \left[dom(g)\right]_{pos\;=\;\left[~\right]} = \left[g\right]_{pos\;=\;\left[kdom\right]}

Some combinations of atomic positions are equivalent. In order to simplify comparison between positions, they are normalized :

  • ran(f^{-1}) = dom(f)\quad\limp\quad \left[f\right]_{pos \;=\; \left[converse,~kran\right]} = \left[f\right]_{pos\;=\;\left[kdom\right]}
  • dom(f^{-1}) = ran(f)\quad\limp\quad \left[f\right]_{pos \;=\; \left[converse,~kdom\right]} = \left[f\right]_{pos\;=\;\left[kran\right]}
  • \left(f^{-1}\right)^{-1} = f\quad\limp\quad \left[f\right]_{pos \;=\; \left[converse,~converse\right]} = \left[f\right]_{pos\;=\;\left[~\right]}

Goal

As explained in the design decision part, goal is checked. If it matches the description here above \left(x\in S\right) then x is stored in an attribute. Moreover, from the set S, we compute every pair expression & position equivalent to it. For example, from the set dom(ran(ran(g))), the map will be computed :

  • dom(ran(ran(g)))\;\mapsto\;[\;]
  • ran(ran(g))\;\mapsto\;[0]
  • ran(g)\;\mapsto\;[1,~0]
  • g\;\mapsto\;[1,~1,~0]

Only range, domain and converse can be taken into account to get all the possibles goals.

A pair (expression ; position) is said equal to the goal if and only if there exists a pair equivalent to the goal (GoalExp ; GoalPos) and a pair equivalent to the given pair (Exp ; Pos) such as Pos = GoalPos and Exp is contained in GoalExp.

Hypotheses

As explained in the design decision part, there are two kinds of hypotheses which are recovered. But when hypotheses related to the left member of the goal \left(x\in S\right) are stored, the position of x is also record. Then, if there is an hypothesis such as \left\{\cdots\;,\;y\mapsto x\mapsto z\;,\;m\mapsto x\;,\;\cdots\right\} = A, then this hypothesis is mapped to the positions \left\{\left[0,~1\right],~\left[1\right]\right\}.

Find a path

Let's considered the sequent with the following goal : x\in V. We start with the hypotheses which have a connection with the goal's member. Such a hypothesis gives two informations : the position pos and the set S as explained in hypotheses. Then, for each equivalent pair to these one \left(S', pos'\right), we compute set containing S' ( Find a path 2.). For every new pair, we test if it is contained in the goal.

To be continued.

Untreated cases

Some cases are not treated. Further enhancement may be provided for some.

  • x\in A\cup B,\quad A\cup B\cup C\subseteq D\quad\vdash\quad x\in D
  • x\in f,\quad f\in A\;op\;B\quad\vdash\quad x\in A\cprod B
  • f\ovl \left\{x\mapsto y\right\}\subseteq A\cprod B\quad\vdash\quad x\in A
  • x\in f\otimes g,\quad f\subseteq A\cprod B,\quad g\subseteq C\cprod D\quad\vdash\quad x\in (A\cprod C)\cprod(B\cprod D)
  • x\in f\otimes g,\quad f\subseteq h\quad\vdash\quad x\in h\otimes g
  • x\in \left\{a,~b,~c\right\},\quad\left\{a,~b,~c,~d,~e,~f\right\}\subseteq D\quad\vdash\quad x\in D
  • x\in A\cprod B,\quad A\subseteq C\quad\vdash\quad x\in C\cprod B
  • x\in dom(f)\cap A\quad\vdash\quad x\in dom(A\domres f)
  • x\in ran(f)\cap A\quad\vdash\quad x\in ran(f\ranres A)
  • x\in \quad\vdash\quad
  • \quad\vdash\quad
  • \quad\vdash\quad
  • \quad\vdash\quad
    \bigl( where op_1 and op_2 are ones of :\quad\rel, \trel, \srel, \strel, \pfun, \tfun, \pinj, \tinj, \psur, \tsur, \tbij\bigr)