# Empty Set Rewrite Rules

Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.

All rewrite rules that match the pattern $\textbf{P}=\emptyset$ are also applicable to predicates of the form $\textbf{P}\subseteq\emptyset$ and $\emptyset=\textbf{P}$, as these predicates are equivalent. All rewrite rules that match the pattern $\textbf{P}=\mathit{Ty}$ are also applicable to predicates of the form $\mathit{Ty}\subseteq\textbf{P}$ and $\mathit{Ty}=\textbf{P}$, as these predicates are equivalent.

Name Rule Side Condition A/M
*
DEF_SPECIAL_NOT_EQUAL $\lnot\, S = \emptyset \;\;\defi\;\; \exists x \qdot x \in S$ where $x$ is not free in $S$ M
*
SIMP_SETENUM_EQUAL_EMPTY $\{ A, \ldots , B\} = \emptyset \;\;\defi\;\; \bfalse$ A
*
SIMP_SPECIAL_EQUAL_COMPSET $\{ x \qdot P(x) \mid E \} = \emptyset \;\;\defi\;\; \forall x\qdot \lnot\, P(x)$ A
*
SIMP_BINTER_EQUAL_TYPE $A \binter \cdots \binter B = \mathit{Ty} \;\;\defi\;\; A = \mathit{Ty} \land \cdots \land B = \mathit{Ty}$ where $\mathit{Ty}$ is a type expression A
*
SIMP_BINTER_SING_EQUAL_EMPTY $A\binter\cdots\binter\{a\}\binter\cdots\binter B = \emptyset \;\;\defi\;\; \lnot\, a \in A\binter\cdots\binter B$ A
*
SIMP_BINTER_SETMINUS_EQUAL_EMPTY $A\binter\cdots\binter(B\setminus C)\binter\cdots\binter D = \emptyset \;\;\defi\;\; (A\binter\cdots\binter B\binter\cdots\binter D) \setminus C = \emptyset$ A
*
SIMP_BUNION_EQUAL_EMPTY $A \bunion \cdots \bunion B = \emptyset \;\;\defi\;\; A = \emptyset \land \cdots \land B = \emptyset$ A
*
SIMP_SETMINUS_EQUAL_EMPTY $A \setminus B = \emptyset \;\;\defi\;\; A \subseteq B$ A
*
SIMP_SETMINUS_EQUAL_TYPE $A \setminus B = \mathit{Ty} \;\;\defi\;\; A = \mathit{Ty} \land B = \emptyset$ where $\mathit{Ty}$ is a type expression A
*
SIMP_POW_EQUAL_EMPTY $\pow (S) = \emptyset \;\;\defi\;\; \bfalse$ A
*
SIMP_POW1_EQUAL_EMPTY $\pown (S) = \emptyset \;\;\defi\;\; S = \emptyset$ A
*
SIMP_KINTER_EQUAL_TYPE $\inter (S) = \mathit{Ty} \;\;\defi\;\; S = \{ \mathit{Ty} \}$ where $\mathit{Ty}$ is a type expression A
*
SIMP_KUNION_EQUAL_EMPTY $\union (S) = \emptyset \;\;\defi\;\; S \subseteq \{ \emptyset \}$ A
*
SIMP_QINTER_EQUAL_TYPE $(\Inter x\qdot P(x) \mid E(x)) = \mathit{Ty} \;\;\defi\;\; \forall x\qdot P(x) \limp E(x) = \mathit{Ty}$ where $\mathit{Ty}$ is a type expression A
*
SIMP_QUNION_EQUAL_EMPTY $(\Union x\qdot P(x) \mid E(x)) = \emptyset \;\;\defi\;\; \forall x\qdot P(x) \limp E(x) = \emptyset$ A
*
SIMP_NATURAL_EQUAL_EMPTY $\nat = \emptyset \;\;\defi\;\; \bfalse$ A
*
SIMP_NATURAL1_EQUAL_EMPTY $\natn = \emptyset \;\;\defi\;\; \bfalse$ A
*
SIMP_TYPE_EQUAL_EMPTY $\mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse$ where $\mathit{Ty}$ is a type expression A
*
SIMP_CPROD_EQUAL_EMPTY $S \cprod T = \emptyset \;\;\defi\;\; S = \emptyset \lor T = \emptyset$ A
*
SIMP_CPROD_EQUAL_TYPE $S \cprod T = \mathit{Ty} \;\;\defi\;\; S = \mathit{Ta} \land T = \mathit{Tb}$ where $\mathit{Ty}$ is a type expression equal to $\mathit{Ta} \cprod \mathit{Tb}$ A
*
SIMP_UPTO_EQUAL_EMPTY $i \upto j = \emptyset \;\;\defi\;\; i > j$ A
*
SIMP_UPTO_EQUAL_INTEGER $i \upto j = \intg \;\;\defi\;\; \bfalse$ A
*
SIMP_UPTO_EQUAL_NATURAL $i \upto j = \nat \;\;\defi\;\; \bfalse$ A
*
SIMP_UPTO_EQUAL_NATURAL1 $i \upto j = \natn \;\;\defi\;\; \bfalse$ A
*
SIMP_SPECIAL_EQUAL_REL $A \rel B = \emptyset \;\;\defi\;\; \bfalse$ idem for operators $\pfun \pinj$ A
SIMP_TYPE_EQUAL_REL $A \rel B = \mathit{Ty} \;\;\defi\;\; A = \mathit{Ta} \land B = \mathit{Tb}$ where $\mathit{Ty}$ is a type expression equal to $\mathit{Ta} \cprod \mathit{Tb}$ A
*
SIMP_SPECIAL_EQUAL_RELDOM $A \trel B = \emptyset \;\;\defi\;\; \lnot\, A = \emptyset \land B = \emptyset$ idem for operator $\tfun$ A
SIMP_TYPE_EQUAL_RELDOMRAN $A \trel B = \mathit{Ty} \;\;\defi\;\; \bfalse$ where $\mathit{Ty}$ is a type expression, idem for operator $\srel, \strel, \tfun, \tinj, \psur, \tsur, \tbij$ A
*
SIMP_SREL_EQUAL_EMPTY $A \srel B = \emptyset \;\;\defi\;\; A = \emptyset \land \lnot\,B = \emptyset$ A
*
SIMP_STREL_EQUAL_EMPTY $A \strel B = \emptyset \;\;\defi\;\; (A = \emptyset \leqv \lnot\,B = \emptyset)$ A
*
SIMP_DOM_EQUAL_EMPTY $\dom (r) = \emptyset \;\;\defi\;\; r = \emptyset$ A
*
SIMP_RAN_EQUAL_EMPTY $\ran (r) = \emptyset \;\;\defi\;\; r = \emptyset$ A
*
SIMP_FCOMP_EQUAL_EMPTY $p \fcomp q = \emptyset \;\;\defi\;\; \ran (p) \binter \dom (q) = \emptyset$ A
*
SIMP_BCOMP_EQUAL_EMPTY $p \bcomp q = \emptyset \;\;\defi\;\; \ran (q) \binter \dom (p) = \emptyset$ A
*
SIMP_DOMRES_EQUAL_EMPTY $S \domres r = \emptyset \;\;\defi\;\; \dom (r) \binter S = \emptyset$ A
*
SIMP_DOMRES_EQUAL_TYPE $S \domres r = \mathit{Ty} \;\;\defi\;\; S = \mathit{Ta} \land r = \mathit{Ty}$ where $\mathit{Ty}$ is a type expression equal to $\mathit{Ta} \cprod \mathit{Tb}$ A
*
SIMP_DOMSUB_EQUAL_EMPTY $S \domsub r = \emptyset \;\;\defi\;\; \dom (r) \subseteq S$ A
*
SIMP_DOMSUB_EQUAL_TYPE $S \domsub r = \mathit{Ty} \;\;\defi\;\; S = \emptyset \land r = \mathit{Ty}$ where $\mathit{Ty}$ is a type expression A
*
SIMP_RANRES_EQUAL_EMPTY $r \ranres S = \emptyset \;\;\defi\;\; \ran (r) \binter S = \emptyset$ A
*
SIMP_RANRES_EQUAL_TYPE $r \ranres S = \mathit{Ty} \;\;\defi\;\; S = \mathit{Tb} \land r = \mathit{Ty}$ where $\mathit{Ty}$ is a type expression equal to $\mathit{Ta} \cprod \mathit{Tb}$ A
*
SIMP_RANSUB_EQUAL_EMPTY $r \ransub S = \emptyset \;\;\defi\;\; \ran (r) \subseteq S$ A
*
SIMP_RANSUB_EQUAL_TYPE $r \ransub S = \mathit{Ty} \;\;\defi\;\; S = \emptyset \land r = \mathit{Ty}$ where $\mathit{Ty}$ is a type expression A
*
SIMP_CONVERSE_EQUAL_EMPTY $r^{-1} = \emptyset \;\;\defi\;\; r = \emptyset$ A
*
SIMP_CONVERSE_EQUAL_TYPE $r^{-1} = \mathit{Ty} \;\;\defi\;\; r = \mathit{Ty}^{-1}$ where $\mathit{Ty}$ is a type expression A
*
SIMP_RELIMAGE_EQUAL_EMPTY $r[S] = \emptyset \;\;\defi\;\; S \domres r = \emptyset$ A
*
SIMP_OVERL_EQUAL_EMPTY $r \ovl \cdots \ovl s = \emptyset \;\;\defi\;\; r = \emptyset \land \cdots \land s = \emptyset$ A
*
SIMP_DPROD_EQUAL_EMPTY $p \dprod q = \emptyset \;\;\defi\;\; \dom (p) \binter \dom (q) = \emptyset$ A
*
SIMP_DPROD_EQUAL_TYPE $p \dprod q = \mathit{Ty} \;\;\defi\;\; p = \mathit{Ta} \cprod \mathit{Tb} \land q = \mathit{Ta} \cprod \mathit{Tc}$ where $\mathit{Ty}$ is a type expression equal to $\mathit{Ta} \cprod (\mathit{Tb} \cprod \mathit{Tc})$ A
*
SIMP_PPROD_EQUAL_EMPTY $p \pprod q = \emptyset \;\;\defi\;\; p = \emptyset \lor q = \emptyset$ A
*
SIMP_PPROD_EQUAL_TYPE $p \pprod q = \mathit{Ty} \;\;\defi\;\; p = \mathit{Ta} \cprod \mathit{Tc} \land q = \mathit{Tb} \cprod \mathit{Td}$ where $\mathit{Ty}$ is a type expression equal to $(\mathit{Ta} \cprod \mathit{Tb}) \cprod (\mathit{Tc} \cprod \mathit{Td})$ A
*
SIMP_ID_EQUAL_EMPTY $\id = \emptyset \;\;\defi\;\; \bfalse$ A
*
SIMP_PRJ1_EQUAL_EMPTY $\prjone = \emptyset \;\;\defi\;\; \bfalse$ A
*
SIMP_PRJ2_EQUAL_EMPTY $\prjtwo = \emptyset \;\;\defi\;\; \bfalse$ A