Inference Rules: Difference between revisions
From Event-B
				
				
				Jump to navigationJump to search
				
				
| imported>Nicolas m moved datatype rules to extension proof rules page | imported>Laurent  Replaced "top-level" with WD strictness or freeness condition. | ||
| Line 22: | Line 22: | ||
| {{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | {{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | ||
| {{RRRow}}| ||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math> | {{RRRow}}| ||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathbf{P}</math> is WD strict || M | ||
| {{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | {{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | ||
| Line 63: | Line 63: | ||
| \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})} | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})} | ||
| {\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\;   | {\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\;   | ||
| \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> ||  | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> || where <math>\mathbf{T}</math> and <math>\mathbf{U}</math> are not bound by <math>\mathbf{G}</math> || A | ||
| {{RRRow}}| ||{{Rulename|IN_INTER}}|| <math>\frac{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | {{RRRow}}| ||{{Rulename|IN_INTER}}|| <math>\frac{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | ||
| \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})} | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})} | ||
| {\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | {\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | ||
| \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> ||  | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || where <math>\mathbf{E}</math> and <math>\mathbf{T}</math> are not bound by <math>\mathbf{G}</math> || A | ||
| {{RRRow}}| ||{{Rulename|NOTIN_INTER}}|| <math>\frac{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | {{RRRow}}| ||{{Rulename|NOTIN_INTER}}|| <math>\frac{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | ||
| \textbf{G}(\emptyset)} | \textbf{G}(\emptyset)} | ||
| {\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | {\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;   | ||
| \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> ||  | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || where <math>\mathbf{E}</math> and <math>\mathbf{T}</math> are not bound by <math>\mathbf{G}</math> || A | ||
| {{RRRow}}|*||{{Rulename|FIN_L_LOWER_BOUND_L}}|| <math>\frac{}{\textbf{H},\;\finite(S) \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || The goal is discharged || A | {{RRRow}}|*||{{Rulename|FIN_L_LOWER_BOUND_L}}|| <math>\frac{}{\textbf{H},\;\finite(S) \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || The goal is discharged || A | ||
| Line 100: | Line 100: | ||
| ,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E)    | ,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E)    | ||
| ,\;\textbf{P}((\{E\}) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E   | ,\;\textbf{P}((\{E\}) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E   | ||
| \mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> ||  | \mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || A | ||
| {{RRRow}}|*||{{Rulename|OV_SETENUM_R}}|| <math>\frac{\textbf{H},\; G=E \;\;\vdash\;\;\textbf{Q}(F)   | {{RRRow}}|*||{{Rulename|OV_SETENUM_R}}|| <math>\frac{\textbf{H},\; G=E \;\;\vdash\;\;\textbf{Q}(F)   | ||
| \qquad \textbf{H},\; \neg\,(G=E)  \;\;\vdash\;\;\textbf{Q}((\{E\}) \domsub f)(G))}{\textbf{H}   | \qquad \textbf{H},\; \neg\,(G=E)  \;\;\vdash\;\;\textbf{Q}((\{E\}) \domsub f)(G))}{\textbf{H}   | ||
| \;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G))}</math> ||  | \;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A | ||
| {{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G \in \dom(g)  ,\;\textbf{P}(g(G))\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,G \in \dom(g)  ,\;\textbf{P}((\dom(g) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl g)(G)) \;\;\vdash \;\; \textbf{Q}}</math> ||  | {{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G \in \dom(g)  ,\;\textbf{P}(g(G))\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,G \in \dom(g)  ,\;\textbf{P}((\dom(g) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl g)(G)) \;\;\vdash \;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || A | ||
| {{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> ||  | {{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A | ||
| {{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> ||  | {{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
| {{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> ||  | {{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
| {{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> ||  | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
| {{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> ||  | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
| {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])} </math> ||  | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])} </math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
| {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_L}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} } </math> ||  | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_L}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} } </math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
| {{RRRow}}|*||{{Rulename|SIM_FCOMP_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(g(f(x))) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f \fcomp g)(x))}</math> ||  | {{RRRow}}|*||{{Rulename|SIM_FCOMP_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(g(f(x))) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f \fcomp g)(x))}</math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
| {{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G}}</math> ||  | {{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G}}</math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
| {{RRRow}}|*||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S)}</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S)}</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M | ||
| Line 165: | Line 165: | ||
| {{RRRow}}|*||{{Rulename|FIN_GE_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n)  \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \nat }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> ||  || M | {{RRRow}}|*||{{Rulename|FIN_GE_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n)  \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \nat }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> ||  || M | ||
| {{RRRow}}|||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\ | {{RRRow}}|||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || where <math>\mathbf{Q}</math> is WD strict || M | ||
| {{RRRow}}| ||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1)  \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b))  \;\;\vdash\;\; \textbf{Q}}</math> || <math>\ | {{RRRow}}| ||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1)  \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b))  \;\;\vdash\;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || M | ||
| {{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S \subseteq T}{\textbf{H} \;\;\vdash\;\; \card(S) \leq \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | {{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S \subseteq T}{\textbf{H} \;\;\vdash\;\; \card(S) \leq \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | ||
| Line 179: | Line 179: | ||
| {{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | {{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | ||
| {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \textbf{G}} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \textbf{G}} </math>|| where <math>\mathbf{P}</math> is WD strict ||  M | ||
| {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus  T))} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus  T))} </math>|| where <math>\mathbf{P}</math> is WD strict ||  M | ||
| {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \textbf{G}} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \textbf{G}} </math>|| where <math>\mathbf{P}</math> is WD strict ||  M | ||
| {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod  T))} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod  T))} </math>|| where <math>\mathbf{P}</math> is WD strict ||  M | ||
| {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | ||
Revision as of 14:32, 17 September 2010
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
| Name | Rule | Side Condition | A/M 
 | |
|---|---|---|---|---|
| * | HYP |  | A 
 | |
| * | HYP_OR |  | A 
 | |
| * | CNTR |  | A 
 | |
| * | FALSE_HYP |  | A 
 | |
| * | TRUE_GOAL |  | A 
 | |
| * | FUN_GOAL |  | where  and  denote types and  is one of  ,  ,  ,  ,  ,  ,  . | A 
 | 
| FUN_IMAGE_GOAL |  | where  denotes a set of relations (any arrow) and  is WD strict | M 
 | |
| FUN_GOAL_REC |  | where  and  denote types,  denotes a set of relations (any arrow) and  is one of  ,  ,  ,  ,  ,  ,  . | A 
 | |
| * | DBL_HYP |  | A 
 | |
| * | AND_L |  | A 
 | |
| * | AND_R |  | A 
 | |
| IMP_L1 |  | A 
 | ||
| * | IMP_R |  | A 
 | |
| * | IMP_AND_L |  | A 
 | |
| * | IMP_OR_L |  | A 
 | |
| * | AUTO_MH |  | A 
 | |
| * | NEG_IN_L |  | A 
 | |
| * | NEG_IN_R |  | A 
 | |
| * | XST_L |  | A 
 | |
| * | ALL_R |  | A 
 | |
| * | EQL_LR |  |  is a variable which is not free in  | A 
 | 
| * | EQL_RL |  |  is a variable which is not free in  | A 
 | 
| SUBSET_INTER |  | where  and  are not bound by  | A 
 | |
| IN_INTER |  | where  and  are not bound by  | A 
 | |
| NOTIN_INTER |  | where  and  are not bound by  | A 
 | |
| * | FIN_L_LOWER_BOUND_L |  | The goal is discharged | A 
 | 
| * | FIN_L_LOWER_BOUND_R |  | The goal is discharged | A 
 | 
| * | FIN_L_UPPER_BOUND_L |  | The goal is discharged | A 
 | 
| * | FIN_L_UPPER_BOUND_R |  | The goal is discharged | A 
 | 
| * | CONTRADICT_L |  | M 
 | |
| * | CONTRADICT_R |  | M 
 | |
| * | CASE |  | M 
 | |
| * | MH |  | M 
 | |
| * | HM |  | M 
 | |
| EQV |  | M 
 | ||
| * | OV_SETENUM_L |  | where  is WD strict | A 
 | 
| * | OV_SETENUM_R |  | where  is WD strict | A 
 | 
| * | OV_L |  | where  is WD strict | A 
 | 
| * | OV_R |  | where  is WD strict | A 
 | 
| * | DIS_BINTER_R | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}](/images/math/0/3/8/0385bdd4c9cd892d9cf7289b1de32a3c.png) | where  is WD strict,  and  denote types. | M 
 | 
| * | DIS_BINTER_L | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}](/images/math/1/3/f/13f3f5de8aa0fbd38b361bdbeb350c47.png) | where  is WD strict,  and  denote types. | M 
 | 
| * | DIS_SETMINUS_R | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}](/images/math/3/b/6/3b6a7e21221fc9df829e310d1f8e384b.png) | where  is WD strict,  and  denote types. | M 
 | 
| * | DIS_SETMINUS_L | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}](/images/math/e/0/f/e0f8105695bca22877758b8ba283cbec.png) | where  is WD strict,  and  denote types. | M 
 | 
| * | SIM_REL_IMAGE_R | ![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])}](/images/math/7/d/f/7dfac56e8c4269e247b888bd790b211d.png) | where  is WD strict. | M 
 | 
| * | SIM_REL_IMAGE_L | ![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} }](/images/math/f/6/f/f6fd31552c994d9d3d298f9b5c82d3e9.png) | where  is WD strict. | M 
 | 
| * | SIM_FCOMP_R |  | where  is WD strict. | M 
 | 
| * | SIM_FCOMP_L |  | where  is WD strict. | M 
 | 
| * | FIN_SUBSETEQ_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_BINTER_R |  | M 
 | |
| * | FIN_SETMINUS_R |  | M 
 | |
| * | FIN_REL_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_REL_IMG_R | ![\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s])}](/images/math/0/5/1/051dae4a6e35406fa3ee03c69ada792f.png) | M 
 | |
| * | FIN_REL_RAN_R |  | M 
 | |
| * | FIN_REL_DOM_R |  | M 
 | |
| * | FIN_FUN1_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN2_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_IMG_R | ![\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s])}](/images/math/b/5/8/b5860ef7c2133d3b49f32fa2744c618f.png) | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_RAN_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_DOM_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | LOWER_BOUND_L |  |  must not contain any bound variable | M 
 | 
| * | LOWER_BOUND_R |  |  must not contain any bound variable | M 
 | 
| * | UPPER_BOUND_L |  |  must not contain any bound variable | M 
 | 
| * | UPPER_BOUND_R |  |  must not contain any bound variable | M 
 | 
| * | FIN_LT_0 |  | M 
 | |
| * | FIN_GE_0 |  | M 
 | |
| CARD_INTERV |  | where  is WD strict | M 
 | |
| CARD_EMPTY_INTERV |  | where  is WD strict | M 
 | |
| * | DERIV_LE_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_GE_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_LT_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_GT_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_EQUAL_CARD |  |  and  bear the same type | M 
 | 
| SIMP_CARD_SETMINUS_L |  | where  is WD strict | M | |
| SIMP_CARD_SETMINUS_R |  | where  is WD strict | M 
 | |
| SIMP_CARD_CPROD_L |  | where  is WD strict | M | |
| SIMP_CARD_CPROD_R |  | where  is WD strict | M 
 | |
| * | FORALL_INST | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}](/images/math/a/c/b/acb596a712a0f720a7d3238f967ccfe6.png) |  is instantiated with  | M 
 | 
| * | FORALL_INST_MP | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}](/images/math/e/2/5/e25e646ecaceca4cb4143a3e66dbb185.png) |  is instantiated with  and a Modus Ponens is applied | M 
 | 
| * | CUT |  | hypothesis  is added | M 
 | 
| * | EXISTS_INST |  |  is instantiated with  | M 
 | 
| * | DISTINCT_CASE |  | case distinction on predicate  | M 
 | 
| ONE_POINT_L | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}](/images/math/8/b/1/8b19ec24619d8d756596ebe54616be06.png) | The rule can be applied with  as well as with  | A 
 | |
| ONE_POINT_R | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H}  \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }](/images/math/3/7/9/379ac43eaae96f14177427e9cbc89387.png) | The rule can be applied with  as well as with  | A | 
See also Extension Proof Rules#Inference Rules.
