Inference Rules: Difference between revisions
From Event-B
				
				
				Jump to navigationJump to search
				
				
imported>Wohuai mNo edit summary  | 
				imported>Nicolas m Removed induction on integers (was wrong), reviewed induciton on naturals  | 
				||
| (40 intermediate revisions by 6 users not shown) | |||
| Line 10: | Line 10: | ||
{{RRHeader}}  | {{RRHeader}}  | ||
{{RRRow}}|*||{{Rulename|HYP}}|| <math>\frac{}{\textbf{H},\textbf{P} \;\;\vdash \;\; \textbf{P}} </math>||   | {{RRRow}}|*||{{Rulename|HYP}}|| <math>\frac{}{\textbf{H},\textbf{P} \;\;\vdash \;\; \textbf{P}^{\dagger}} </math>|| see below for <math>\textbf{P}^{\dagger}</math> || A  | ||
{{RRRow}}|*||{{Rulename|HYP_OR}}|| <math>\frac{}{\textbf{H},\textbf{Q} \;\;\vdash \;\; \textbf{P} \lor \ldots \lor  \textbf{Q} \lor \ldots \lor \textbf{R}}</math> ||   | {{RRRow}}|*||{{Rulename|HYP_OR}}|| <math>\frac{}{\textbf{H},\textbf{Q} \;\;\vdash \;\; \textbf{P} \lor \ldots \lor  \textbf{Q}^{\dagger} \lor \ldots \lor \textbf{R}}</math> || see below for <math>\textbf{Q}^{\dagger}</math> || A  | ||
{{RRRow}}|*||{{Rulename|CNTR}}|| <math>\frac{}{\textbf{H},\;\textbf{P},\;  | {{RRRow}}|*||{{Rulename|CNTR}}|| <math>\frac{}{\textbf{H},\;\textbf{P},\;\textbf{nP}^{\dagger} \;\;\vdash \;\; \textbf{Q}}</math> || see below for <math>\textbf{nP}^{\dagger}</math> || A  | ||
{{RRRow}}|*||{{Rulename|FALSE_HYP}}|| <math>\frac{}{\textbf{H},\bfalse \;\;\vdash \;\; \textbf{P}}</math> ||  || A  | {{RRRow}}|*||{{Rulename|FALSE_HYP}}|| <math>\frac{}{\textbf{H},\bfalse \;\;\vdash \;\; \textbf{P}}</math> ||  || A  | ||
| Line 22: | Line 22: | ||
{{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A  | {{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A  | ||
{{RRRow}}| ||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>  | {{RRRow}}|*||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathbf{P}</math> is WD strict || M  | ||
{{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A  | {{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A  | ||
| Line 45: | Line 45: | ||
\textbf{H},\textbf{P},\;\textbf{Q}\limp \textbf{R}\;\;\vdash \;\; \textbf{S} }{\textbf{H},\;\textbf{P},\; \textbf{P} \land  \textbf{Q} \limp \textbf{R}  \;\;\vdash \;\; \textbf{S}}</math> ||  || A  | \textbf{H},\textbf{P},\;\textbf{Q}\limp \textbf{R}\;\;\vdash \;\; \textbf{S} }{\textbf{H},\;\textbf{P},\; \textbf{P} \land  \textbf{Q} \limp \textbf{R}  \;\;\vdash \;\; \textbf{S}}</math> ||  || A  | ||
{{RRRow}}|*||{{Rulename|NEG_IN_L}}|| <math>\frac{\textbf{H},\; E \in \{ a,\ldots , c\}  \; \; \vdash \; \; \textbf{P} }{\textbf{H},\; E \in \{ a,\ldots , b, \ldots , c\} , \neg \, (E=b) \; \; \vdash \; \;  \textbf{P} }</math> ||  || A  | {{RRRow}}|*||{{Rulename|NEG_IN_L}}|| <math>\frac{\textbf{H},\; E \in \{ a,\ldots , c\},\; \neg\, (E=b)  \; \; \vdash \; \; \textbf{P} }{\textbf{H},\; E \in \{ a,\ldots , b, \ldots , c\} , \neg \, (E=b) \; \; \vdash \; \;  \textbf{P} }</math> ||  || A  | ||
{{RRRow}}|*||{{Rulename|NEG_IN_R}}|| <math>\frac{\textbf{H},\; E \in \{ a,\ldots , c\}  \; \; \vdash \; \; \textbf{P} }{\textbf{H},\; E \in \{ a,\ldots , b, \ldots , c\} , \neg \, (b=E) \; \; \vdash \; \;  \textbf{P} }</math> ||  || A  | {{RRRow}}|*||{{Rulename|NEG_IN_R}}|| <math>\frac{\textbf{H},\; E \in \{ a,\ldots , c\},\; \neg\, (b=E)  \; \; \vdash \; \; \textbf{P} }{\textbf{H},\; E \in \{ a,\ldots , b, \ldots , c\} , \neg \, (b=E) \; \; \vdash \; \;  \textbf{P} }</math> ||  || A  | ||
{{RRRow}}|*||{{Rulename|XST_L}}|| <math>\frac{\textbf{H},\;  \textbf{P(x)} \; \; \vdash \; \;  \textbf{Q}  | {{RRRow}}|*||{{Rulename|XST_L}}|| <math>\frac{\textbf{H},\;  \textbf{P(x)} \; \; \vdash \; \;  \textbf{Q}  | ||
| Line 63: | Line 63: | ||
\textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})}  | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})}  | ||
{\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\;    | {\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\;    | ||
\textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> ||   | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> || where <math>\mathbf{T}</math> and <math>\mathbf{U}</math> are not bound by <math>\mathbf{G}</math> || A  | ||
{{RRRow}}| ||{{Rulename|IN_INTER}}|| <math>\frac{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | {{RRRow}}| ||{{Rulename|IN_INTER}}|| <math>\frac{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})}  | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})}  | ||
{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | {\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> ||   | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || where <math>\mathbf{E}</math> and <math>\mathbf{T}</math> are not bound by <math>\mathbf{G}</math> || A  | ||
{{RRRow}}| ||{{Rulename|NOTIN_INTER}}|| <math>\frac{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | {{RRRow}}| ||{{Rulename|NOTIN_INTER}}|| <math>\frac{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | ||
\textbf{G}(\emptyset)}  | \textbf{G}(\emptyset)}  | ||
{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | {\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\;    | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> ||   | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || where <math>\mathbf{E}</math> and <math>\mathbf{T}</math> are not bound by <math>\mathbf{G}</math> || A  | ||
{{RRRow}}|*||{{Rulename|FIN_L_LOWER_BOUND_L}}|| <math>\frac{}{\textbf{H},\;\finite(S) \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || The goal is discharged || A  | {{RRRow}}|*||{{Rulename|FIN_L_LOWER_BOUND_L}}|| <math>\frac{}{\textbf{H},\;\finite(S) \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || The goal is discharged || A  | ||
| Line 88: | Line 88: | ||
{{RRRow}}|*||{{Rulename|CASE}}|| <math>\frac{\textbf{H}, \; \textbf{P} \; \; \vdash \; \;  \textbf{R} \qquad\ldots\qquad \textbf{H}, \; \textbf{Q} \; \; \vdash \; \;  \textbf{R} }{\textbf{H},\; \textbf{P} \lor \ldots \lor \textbf{Q} \; \; \vdash \; \;  \textbf{R} }</math> ||  || M  | {{RRRow}}|*||{{Rulename|CASE}}|| <math>\frac{\textbf{H}, \; \textbf{P} \; \; \vdash \; \;  \textbf{R} \qquad\ldots\qquad \textbf{H}, \; \textbf{Q} \; \; \vdash \; \;  \textbf{R} }{\textbf{H},\; \textbf{P} \lor \ldots \lor \textbf{Q} \; \; \vdash \; \;  \textbf{R} }</math> ||  || M  | ||
{{RRRow}}|*||{{Rulename|IMP_CASE}}|| <math>\frac{\textbf{H}, \; \lnot\textbf{P} \; \; \vdash \; \;  \textbf{R} \qquad \textbf{H}, \; \textbf{Q} \; \; \vdash \; \;  \textbf{R} }{\textbf{H},\; \textbf{P} \limp\textbf{Q} \; \; \vdash \; \;  \textbf{R} }</math> ||  || M  | |||
{{RRRow}}|*||{{Rulename|MH}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\textbf{P} \qquad \textbf{H},\; \textbf{Q} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> ||  || M  | {{RRRow}}|*||{{Rulename|MH}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\textbf{P} \qquad \textbf{H},\; \textbf{Q} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> ||  || M  | ||
| Line 93: | Line 95: | ||
{{RRRow}}|*||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> ||  || M  | {{RRRow}}|*||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> ||  || M  | ||
{{RRRow}}|||{{Rulename|  | {{RRRow}}|||{{Rulename|EQV_LR}}|| <math>\frac{\textbf{H(Q)},\; \textbf{P} \leqv \textbf{Q}    | ||
\;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q}    | \;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q}    | ||
\;\;\vdash \;\; \textbf{G(P)}}</math> ||  || M  | \;\;\vdash \;\; \textbf{G(P)}}</math> ||  || M  | ||
{{RRRow}}|||{{Rulename|EQV_RL}}|| <math>\frac{\textbf{H(P)},\; \textbf{P} \leqv \textbf{Q}   | |||
\;\;\vdash\;\; \textbf{G(P)}}{\textbf{H(Q)},\;\textbf{P} \leqv \textbf{Q}   | |||
\;\;\vdash \;\; \textbf{G(Q)}}</math> ||  || M  | |||
{{RRRow}}|*||{{Rulename|OV_SETENUM_L}}|| <math>\frac{\textbf{H},\; G=E     | {{RRRow}}|*||{{Rulename|OV_SETENUM_L}}|| <math>\frac{\textbf{H},\; G=E     | ||
,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E)     | ,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E)     | ||
,\;\textbf{P}((\{E\}) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E    | ,\;\textbf{P}((\{E\}) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E    | ||
\mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> ||   | \mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || A  | ||
{{RRRow}}|*||{{Rulename|OV_SETENUM_R}}|| <math>\frac{\textbf{H},\; G=E \;\;\vdash\;\;\textbf{Q}(F)    | {{RRRow}}|*||{{Rulename|OV_SETENUM_R}}|| <math>\frac{\textbf{H},\; G=E \;\;\vdash\;\;\textbf{Q}(F)    | ||
\qquad \textbf{H},\; \neg\,(G=E)  \;\;\vdash\;\;\textbf{Q}((\{E\}) \domsub f)(G))}{\textbf{H}    | \qquad \textbf{H},\; \neg\,(G=E)  \;\;\vdash\;\;\textbf{Q}((\{E\}) \domsub f)(G))}{\textbf{H}    | ||
\;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G))}</math> ||   | \;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A  | ||
{{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G \in \dom(g)  ,\;\textbf{P}(g(G))\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,G \in \dom(g)  ,\;\textbf{P}((\dom(g) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl g)(G)) \;\;\vdash \;\; \textbf{Q}}</math> ||   | {{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G \in \dom(g)  ,\;\textbf{P}(g(G))\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,G \in \dom(g)  ,\;\textbf{P}((\dom(g) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl g)(G)) \;\;\vdash \;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || A  | ||
{{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> ||   | {{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A  | ||
{{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> ||   | {{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> || where <math>A</math> and <math>B</math> denote types. || M  | ||
{{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> ||   | {{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>A</math> and <math>B</math> denote types. || M  | ||
{{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> ||   | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> || where <math>A</math> and <math>B</math> denote types. || M  | ||
{{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> ||   | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>A</math> and <math>B</math> denote types. || M  | ||
{{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])} </math> ||   | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])} </math> ||  || M  | ||
{{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_L}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} } </math> ||   | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_L}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} } </math> ||  || M  | ||
{{RRRow}}|*||{{Rulename|SIM_FCOMP_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(g(f(x))) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f \fcomp g)(x))}</math> ||   | {{RRRow}}|*||{{Rulename|SIM_FCOMP_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(g(f(x))) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f \fcomp g)(x))}</math> ||  || M  | ||
{{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G}}</math> ||   | {{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x))))    \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G}}</math> ||  || M  | ||
{{RRRow}}|*||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S)}</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M  | {{RRRow}}|*||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S)}</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M  | ||
| Line 131: | Line 137: | ||
\;\;\finite\,(S) \;\lor\;\ldots \;\lor\; \finite\,(T)}{\textbf{H} \;\;\vdash    | \;\;\finite\,(S) \;\lor\;\ldots \;\lor\; \finite\,(T)}{\textbf{H} \;\;\vdash    | ||
\;\; \finite\,(S \;\binter\;\ldots \;\binter\; T)}</math> ||  || M  | \;\; \finite\,(S \;\binter\;\ldots \;\binter\; T)}</math> ||  || M  | ||
{{RRRow}}| ||{{Rulename|FIN_KINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash   | |||
\;\;\exists s\, \qdot\, s \in S \land \finite\,(s)}{\textbf{H} \;\;\vdash   | |||
\;\; \finite\,(\inter(S))}</math> || where <math>s</math> is fresh || M  | |||
{{RRRow}}| ||{{Rulename|FIN_QINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash   | |||
\;\;\exists s\, \qdot\, P \land \finite\,(E)}{\textbf{H} \;\;\vdash   | |||
\;\; \finite\,(\Inter s\,\qdot\,P\,\mid\,E)}</math> ||  || M  | |||
{{RRRow}}|*||{{Rulename|FIN_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash    | {{RRRow}}|*||{{Rulename|FIN_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash    | ||
\;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T)}</math> ||  || M  | \;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T)}</math> ||  || M  | ||
{{RRRow}}| ||{{Rulename|FIN_REL}}|| <math>\frac{}{\textbf{H},\; r\in S\;\mathit{op}\;T,\; \finite\,(S),\; \finite\,(T) \;\;\vdash \;\; \finite\,(r)}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) || A  | |||
{{RRRow}}|*||{{Rulename|FIN_REL_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\rel T) \qquad\textbf{H} \;\;\vdash \;\; r \;\in\; S \rel T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(r)}</math> || the user has to write the set corresponding to <math>S \rel T</math> in the editing area of the Proof Control Window || M  | {{RRRow}}|*||{{Rulename|FIN_REL_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\rel T) \qquad\textbf{H} \;\;\vdash \;\; r \;\in\; S \rel T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(r)}</math> || the user has to write the set corresponding to <math>S \rel T</math> in the editing area of the Proof Control Window || M  | ||
| Line 142: | Line 158: | ||
{{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r))}</math> ||  || M  | {{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r))}</math> ||  || M  | ||
{{RRRow}}| ||{{Rulename|FIN_FUN_DOM}}|| <math>\frac{}{\textbf{H},\; f\in S\;\mathit{op}\;T,\; \finite\,(S) \;\;\vdash \;\; \finite\,(f)}</math> || where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A  | |||
{{RRRow}}| ||{{Rulename|FIN_FUN_RAN}}|| <math>\frac{}{\textbf{H},\; f\in S\;\mathit{op}\;T,\; \finite\,(T) \;\;\vdash \;\; \finite\,(f)}</math> || where <math>\mathit{op}</math> is one of <math>\pinj</math>, <math>\tinj</math>, <math>\tbij</math> || A  | |||
{{RRRow}}|*||{{Rulename|FIN_FUN1_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f)}</math> || the user has to write the set corresponding to <math>S  \pfun T</math> in the editing area of the Proof Control Window || M  | {{RRRow}}|*||{{Rulename|FIN_FUN1_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f)}</math> || the user has to write the set corresponding to <math>S  \pfun T</math> in the editing area of the Proof Control Window || M  | ||
| Line 165: | Line 185: | ||
{{RRRow}}|*||{{Rulename|FIN_GE_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n)  \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \nat }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> ||  || M  | {{RRRow}}|*||{{Rulename|FIN_GE_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n)  \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \nat }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> ||  || M  | ||
{{RRRow}}|||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\  | {{RRRow}}|||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || where <math>\mathbf{Q}</math> is WD strict || M  | ||
{{RRRow}}| ||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1)  \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b))  \;\;\vdash\;\; \textbf{Q}}</math> || <math>\  | {{RRRow}}| ||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1)  \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b))  \;\;\vdash\;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || M  | ||
{{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S \subseteq T}{\textbf{H} \;\;\vdash\;\; \card(S) \leq \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M  | {{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S \subseteq T}{\textbf{H} \;\;\vdash\;\; \card(S) \leq \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M  | ||
| Line 179: | Line 199: | ||
{{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M  | {{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H}  \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M  | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \textbf{G}} </math>||   | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus  T)) \;\;\vdash\;\; \textbf{G}} </math>||  ||  M  | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus  T))} </math>||   | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus  T))} </math>||  ||  M  | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \textbf{G}} </math>||   | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod  T)) \;\;\vdash\;\; \textbf{G}} </math>||  ||  M  | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod  T))} </math>||   | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod  T))} </math>||  ||  M  | ||
{{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M  | {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M  | ||
{{RRRow}}|*||{{Rulename|FORALL_INST_MP}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> and a Modus Ponens is applied|| M  | {{RRRow}}|*||{{Rulename|FORALL_INST_MP}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> and a Modus Ponens is applied|| M  | ||
{{RRRow}}|*||{{Rulename|FORALL_INST_MT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\lnot\textbf{Q} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\lnot\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> and a Modus Tollens is applied|| M  | |||
{{RRRow}}|*||{{Rulename|CUT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad  \textbf{H}, {WD}(\textbf{P}) \;\;\vdash \;\; \textbf{\textbf{P}} \qquad  \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || hypothesis <math>\textbf{P}</math> is added || M  | {{RRRow}}|*||{{Rulename|CUT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad  \textbf{H}, {WD}(\textbf{P}) \;\;\vdash \;\; \textbf{\textbf{P}} \qquad  \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || hypothesis <math>\textbf{P}</math> is added || M  | ||
| Line 195: | Line 217: | ||
{{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad  \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad  \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M  | {{RRRow}}|*||{{Rulename|DISTINCT_CASE}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(\textbf{P}) \qquad  \textbf{H}, {WD}(\textbf{P}), \textbf{P} \;\;\vdash \;\; \textbf{\textbf{G}} \qquad  \textbf{H}, {WD}(\textbf{P}), \lnot \textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H} \;\;\vdash\;\; \textbf{G}}</math> || case distinction on predicate <math>\textbf{P}</math> || M  | ||
{{RRRow}}| ||{{Rulename|ONE_POINT_L}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> ||  A  | {{RRRow}}|*||{{Rulename|ONE_POINT_L}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> ||  A  | ||
{{RRRow}}|*||{{Rulename|ONE_POINT_R}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H}  \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> ||  A  | |||
{{RRRow}}|*||{{Rulename|SIM_OV_REL}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\rel B} </math> || where <math>\mathit{op}</math> is one of <math>\rel</math>, <math>\trel</math>, <math>\srel</math>, <math>\strel</math>, <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A  | |||
{{RRRow}}| ||{{Rulename|  | {{RRRow}}|*||{{Rulename|SIM_OV_TREL}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\trel B} </math> || where <math>\mathit{op}</math> is one of <math>\trel</math>, <math>\strel</math>, <math>\tfun</math>,<math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A  | ||
{{RRRow}}| ||{{Rulename|  | {{RRRow}}|*||{{Rulename|SIM_OV_PFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\pfun B} </math> || where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A  | ||
{{RRRow}}|*||{{Rulename|SIM_OV_TFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\tfun B} </math> || where <math>\mathit{op}</math> is one of <math>\tfun</math>, <math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A  | |||
{{RRRow}}| ||{{Rulename|INDUC_NAT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; x\in\nat \qquad \textbf{H}, x=0 \;\;\vdash \;\; \textbf{P}(x) \qquad \textbf{H}, n\in\nat, \textbf{P}(n) \;\;\vdash \;\; \textbf{P}(n+1)}{\textbf{H} \;\;\vdash\;\; \textbf{P}(x)}</math> || <math>x</math> of type <math>\intg</math> appears free in  <math>\textbf{P}</math>; <math>n</math> is introduced as a fresh identifier || M  | |||
{{RRRow}}| ||{{Rulename|INDUC_NAT_COMPL}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; x\in\nat \qquad \textbf{H} \;\;\vdash \;\; \textbf{P}(0) \qquad \textbf{H}, n\in\nat, \forall k\qdot 0\leq k\land k < n \limp \textbf{P}(k) \;\;\vdash \;\; \textbf{P}(n)}{\textbf{H} \;\;\vdash\;\; \textbf{P}(x)}</math> || <math>x</math> of type <math>\intg</math> appears free in  <math>\textbf{P}</math>; <math>n</math> is introduced as a fresh identifier || M  | |||
|}  | |}  | ||
Those following rules have been implemented in the reasoner GeneralizedModusPonens.  | |||
{{RRHeader}}  | |||
{{RRRow}}|*||{{Rulename|GENMP_HYP_HYP}}|| <math> \frac{P,\varphi(\btrue) \vdash G}{P,\varphi(P^{\dagger}) \vdash G} </math> ||  see below for <math> P^{\dagger} </math> || A  | |||
{{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_HYP}}|| <math> \frac{nP^{\dagger},\varphi(\bfalse) \vdash G}{nP^{\dagger},\varphi(P) \vdash G} </math> || see below for <math> P^{\dagger} </math> || A  | |||
{{RRRow}}|*||{{Rulename|GENMP_HYP_GOAL}}|| <math> \frac{P \vdash \varphi(\btrue)}{P \vdash \varphi(P^{\dagger})} </math> || see below for <math> P^{\dagger} </math> || A  | |||
{{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_GOAL}}|| <math> \frac{nP^{\dagger} \vdash \varphi(\bfalse)}{nP^{\dagger} \vdash \varphi(P)} </math> || see below for <math> P^{\dagger} </math> || A  | |||
{{RRRow}}|*||{{Rulename|GENMP_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash \lnot nG^{\dagger}}{H,\varphi(G)\vdash \lnot nG^{\dagger}} </math> || see below for <math> nG^{\dagger} </math> || A  | |||
{{RRRow}}|*||{{Rulename|GENMP_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash \lnot G}{H,\varphi(G^{\dagger})\vdash \lnot G} </math> || see below for <math> G^{\dagger} </math> || A  | |||
{{RRRow}}|*||{{Rulename|GENMP_OR_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash G_1\lor\cdots\lor \lnot nG_i^{\dagger}\lor\cdots\lor G_n}{H,\varphi(G_i)\vdash G_1\lor\cdots\lor \lnot nG_i^{\dagger}\lor\cdots\lor G_n} </math> || see below for <math> nG_i^{\dagger} </math> || A  | |||
{{RRRow}}|*||{{Rulename|GENMP_OR_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash G_1\lor\cdots\lor\ \lnot G_i\lor\cdots\lor G_n}{H,\varphi(G_i^{\dagger})\vdash G_1\lor\cdots\lor\ \lnot G_i\lor\cdots\lor G_n} </math> || see below for <math> G_i^{\dagger} </math> || A  | |||
|}  | |||
Thos following rules have been implemented in the MembershipGoal reasoner.  | |||
{{RRHeader}}  | |||
{{RRRow}}|*||{{Rulename|SUBSET_SUBSETEQ}}|| <math> A\subset B\vdash A\subseteq B </math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|DOM_SUBSET}}|| <math> A\subseteq B\vdash \dom(A)\subseteq\dom(B)</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|RAN_SUBSET}}|| <math> A\subseteq B\vdash \ran(A)\subseteq\ran(B)</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|EQUAL_SUBSETEQ_LR}}|| <math> A=B\vdash A\subseteq B</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|EQUAL_SUBSETEQ_RL}}|| <math> A=B\vdash B\subseteq A</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|IN_DOM_CPROD}}|| <math> x\in\dom(A\cprod B)\vdash x\in A</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|IN_RAN_CPROD}}|| <math> y\in\ran(A\cprod B)\vdash y\in B</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|IN_DOM_REL}}|| <math> x\mapsto y\in f\vdash x\in\dom(f)</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|IN_RAN_REL}}|| <math> x\mapsto y\in f\vdash y\in\ran(f)</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|SETENUM_SUBSET}}|| <math> \left\{a,\cdots,x,\cdots, z\right\}\subseteq A\vdash x\in A</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|OVR_RIGHT_SUBSET}}|| <math> f\ovl\cdots\ovl g\ovl\cdots\ovl h\subseteq A\vdash g\ovl\cdots\ovl h\subseteq A</math> ||  || A  | |||
{{RRRow}}|*||{{Rulename|RELSET_SUBSET_CPROD}}|| <math> f\in A\;op\;B\vdash f\subseteq A\cprod B</math> || where <math>\mathit{op}</math> is one of <math>\rel</math>, <math>\trel</math>, <math>\srel</math>, <math>\strel</math>, <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A  | |||
{{RRRow}}|*||{{Rulename|DERIV_IN_SUBSET}}|| <math> x\in A,\;\; A\subseteq B\vdash x\in B </math> ||  || A  | |||
|}  | |||
The conventions used in this table are described in [[Variations in HYP, CNTR and GenMP]].  | |||
{|class="RRHeader" text-align="left" border="1"  cellspacing="4" cellpadding="8" rules="all" frame="box" style="margin:1em 1em 1em 0; border-style:solid; border-color:#AAAAAA;  display:table; {{{style|}}}"  | |||
! <math>\textbf{P}</math> !! <math>\textbf{P}^{\dagger}</math> !! <math>\textbf{nP}^{\dagger}</math> !! Side Condition  | |||
{{RRRow}}| <math> a = b </math> || <math> a = b, \ \ b = a </math> <br /> <math> a \le b , \ \ b \ge a  </math> <br /> <math> a \ge b , \ \ b \le a </math> || <math> \lnot a = b, \ \ \lnot b = a </math> <br /> <math> a > b, \ \ b < a </math> <br /> <math> a < b, \ \ b > a </math> || where a and b are integers  | |||
{{RRRow}}| <math> a < b </math> || <math> a < b, \ \ b > a </math> <br /> <math> a \le b, \ \ b \ge a </math> <br /> <math> \lnot a = b, \ \ \lnot b = a </math> || <math> a \ge b, \ \ b \le a </math> <br /> <math> a > b, \ \ b < a </math> <br /> <math> a = b, \ \ b = a </math> ||  | |||
{{RRRow}}| <math> a > b </math> || <math> a > b, \ \ b < a </math> <br /> <math> a \ge b, \ \ b \le a </math> <br /> <math> \lnot a = b, \ \ \lnot b = a </math> || <math> a \le b, \ \ b \ge a </math> <br /> <math> a < b, \ \ b > a </math> <br /> <math> a = b, \ \ b = a  </math> ||  | |||
{{RRRow}}| <math> a \le b </math> || <math> a \le b, \ \ b \ge a </math> || <math> a > b, \ \ b < a </math> ||  | |||
{{RRRow}}| <math> a \ge b </math> || <math> a \ge b, \ \ b \le a </math> || <math> a < b, \ \ b > a </math> ||  | |||
{{RRRow}}| <math> \lnot a = b </math> || <math> \lnot a = b, \ \ \lnot b = a </math> || <math> a = b, \ \ b = a </math> ||  | |||
{{RRRow}}| <math> A = B </math> || <math> A = B, \ \ B = A </math> <br /> <math> A \subseteq B, \ \ B \subseteq A  </math> <br /> <math> \lnot A \subset B, \ \ \lnot B \subset A </math> || <math> \lnot A = B, \ \ \lnot B = A </math> <br /> <math> \lnot A \subseteq B, \ \ \lnot B \subseteq A </math> <br /> <math> \ \ A \subset B, \ \ B \subset A </math> || where A and B are sets  | |||
{{RRRow}}| <math> A \subseteq B </math> || <math> A \subseteq B, \lnot B \subset A </math> || <math> \lnot A \subseteq B, B \subset A </math> ||  | |||
{{RRRow}}| <math> A \subset B </math> || <math> A \subset B, \ \ A \subseteq B </math> <br /> <math> \lnot B \subset A, \ \ \lnot B \subseteq A </math> <br /> <math> \lnot A = B, \ \ \lnot B = A</math> || <math> \lnot A \subset B, \ \ \lnot A \subseteq B  </math> <br /> <math> B \subset A, \ \ B \subseteq A </math> <br /> <math> A = B, \ \ B = A </math>||  | |||
{{RRRow}}| <math> \lnot A = B </math> || <math> \lnot A = B, \ \ \lnot B = A </math> || <math> A = B, \ \ B = A </math> ||  | |||
{{RRRow}}| <math> \lnot A \subseteq B </math> || <math> \lnot A \subseteq B, \ \ \lnot A \subset B </math> <br /> <math> \lnot A = B, \ \ \lnot B = A </math> || <math> A \subseteq B, \ \ A \subset B </math> <br /> <math> A = B, \ \ B = A </math> ||  | |||
{{RRRow}}| <math> \lnot A \subset B </math> || <math> \lnot A \subset B </math> || <math> A \subset B </math> ||  | |||
{{RRRow}}| <math> e = f </math> || <math> e = f, \ \ f = e </math> ||<math> \lnot e = f, \ \ \lnot f = e </math> || where e and f are scalars  | |||
{{RRRow}}| <math> \lnot e = f </math> || <math> \lnot e = f, \ \ \lnot  f = e </math> || <math> e = f, \ \ f = e </math> ||  | |||
{{RRRow}}| <math> \textbf{P} </math> || <math> \textbf{P} </math> || <math> \lnot \textbf{P} </math> ||  | |||
{{RRRow}}| <math> \lnot \textbf{P} </math> || || <math> \textbf{P} </math> ||  | |||
|}  | |||
See also [[Extension Proof Rules#Inference Rules]].  | |||
[[Category:User documentation|The Proving Perspective]]  | [[Category:User documentation|The Proving Perspective]]  | ||
[[Category:Rodin Platform|The Proving Perspective]]  | [[Category:Rodin Platform|The Proving Perspective]]  | ||
[[Category:User manual|The Proving Perspective]]  | [[Category:User manual|The Proving Perspective]]  | ||
Revision as of 16:00, 23 June 2014
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
| Name | Rule | Side Condition | A/M
 
  | |
|---|---|---|---|---|
| * | HYP  | 
![]()  | 
see below for ![]()  | 
A
 
  | 
| * | HYP_OR  | 
![]()  | 
see below for ![]()  | 
A
 
  | 
| * | CNTR  | 
![]()  | 
see below for ![]()  | 
A
 
  | 
| * | FALSE_HYP  | 
![]()  | 
A
 
  | |
| * | TRUE_GOAL  | 
![]()  | 
A
 
  | |
| * | FUN_GOAL  | 
![]()  | 
where   and   denote types and   is one of  ,  ,  ,  ,  ,  ,  . | 
A
 
  | 
| * | FUN_IMAGE_GOAL  | 
![]()  | 
where   denotes a set of relations (any arrow) and   is WD strict | 
M
 
  | 
FUN_GOAL_REC  | 
![]()  | 
where   and   denote types,   denotes a set of relations (any arrow) and   is one of  ,  ,  ,  ,  ,  ,  . | 
A
 
  | |
| * | DBL_HYP  | 
![]()  | 
A
 
  | |
| * | AND_L  | 
![]()  | 
A
 
  | |
| * | AND_R  | 
![]()  | 
A
 
  | |
IMP_L1  | 
![]()  | 
A
 
  | ||
| * | IMP_R  | 
![]()  | 
A
 
  | |
| * | IMP_AND_L  | 
![]()  | 
A
 
  | |
| * | IMP_OR_L  | 
![]()  | 
A
 
  | |
| * | AUTO_MH  | 
![]()  | 
A
 
  | |
| * | NEG_IN_L  | 
![]()  | 
A
 
  | |
| * | NEG_IN_R  | 
![]()  | 
A
 
  | |
| * | XST_L  | 
![]()  | 
A
 
  | |
| * | ALL_R  | 
![]()  | 
A
 
  | |
| * | EQL_LR  | 
![]()  | 
  is a variable which is not free in ![]()  | 
A
 
  | 
| * | EQL_RL  | 
![]()  | 
  is a variable which is not free in ![]()  | 
A
 
  | 
SUBSET_INTER  | 
![]()  | 
where   and   are not bound by ![]()  | 
A
 
  | |
IN_INTER  | 
![]()  | 
where   and   are not bound by ![]()  | 
A
 
  | |
NOTIN_INTER  | 
![]()  | 
where   and   are not bound by ![]()  | 
A
 
  | |
| * | FIN_L_LOWER_BOUND_L  | 
![]()  | 
The goal is discharged | A
 
  | 
| * | FIN_L_LOWER_BOUND_R  | 
![]()  | 
The goal is discharged | A
 
  | 
| * | FIN_L_UPPER_BOUND_L  | 
![]()  | 
The goal is discharged | A
 
  | 
| * | FIN_L_UPPER_BOUND_R  | 
![]()  | 
The goal is discharged | A
 
  | 
| * | CONTRADICT_L  | 
![]()  | 
M
 
  | |
| * | CONTRADICT_R  | 
![]()  | 
M
 
  | |
| * | CASE  | 
![]()  | 
M
 
  | |
| * | IMP_CASE  | 
![]()  | 
M
 
  | |
| * | MH  | 
![]()  | 
M
 
  | |
| * | HM  | 
![]()  | 
M
 
  | |
EQV_LR  | 
![]()  | 
M
 
  | ||
EQV_RL  | 
![]()  | 
M
 
  | ||
| * | OV_SETENUM_L  | 
![]()  | 
where   is WD strict | 
A
 
  | 
| * | OV_SETENUM_R  | 
![]()  | 
where   is WD strict | 
A
 
  | 
| * | OV_L  | 
![]()  | 
where   is WD strict | 
A
 
  | 
| * | OV_R  | 
![]()  | 
where   is WD strict | 
A
 
  | 
| * | DIS_BINTER_R  | 
![]()  | 
where   and   denote types. | 
M
 
  | 
| * | DIS_BINTER_L  | 
![]()  | 
where   and   denote types. | 
M
 
  | 
| * | DIS_SETMINUS_R  | 
![]()  | 
where   and   denote types. | 
M
 
  | 
| * | DIS_SETMINUS_L  | 
![]()  | 
where   and   denote types. | 
M
 
  | 
| * | SIM_REL_IMAGE_R  | 
![]()  | 
M
 
  | |
| * | SIM_REL_IMAGE_L  | 
![]()  | 
M
 
  | |
| * | SIM_FCOMP_R  | 
![]()  | 
M
 
  | |
| * | SIM_FCOMP_L  | 
![]()  | 
M
 
  | |
| * | FIN_SUBSETEQ_R  | 
![]()  | 
the user has to write the set corresponding to   in the editing area of the Proof Control Window | 
M
 
  | 
| * | FIN_BINTER_R  | 
![]()  | 
M
 
  | |
FIN_KINTER_R  | 
![]()  | 
where   is fresh | 
M
 
  | |
FIN_QINTER_R  | 
![]()  | 
M
 
  | ||
| * | FIN_SETMINUS_R  | 
![]()  | 
M
 
  | |
FIN_REL  | 
![]()  | 
where   denotes a set of relations (any arrow) | 
A
 
  | |
| * | FIN_REL_R  | 
![]()  | 
the user has to write the set corresponding to   in the editing area of the Proof Control Window | 
M
 
  | 
| * | FIN_REL_IMG_R  | 
![]()  | 
M
 
  | |
| * | FIN_REL_RAN_R  | 
![]()  | 
M
 
  | |
| * | FIN_REL_DOM_R  | 
![]()  | 
M
 
  | |
FIN_FUN_DOM  | 
![]()  | 
where   is one of  ,  ,  ,  ,  ,  , ![]()  | 
A
 
  | |
FIN_FUN_RAN  | 
![]()  | 
where   is one of  ,  , ![]()  | 
A
 
  | |
| * | FIN_FUN1_R  | 
![]()  | 
the user has to write the set corresponding to   in the editing area of the Proof Control Window | 
M
 
  | 
| * | FIN_FUN2_R  | 
![]()  | 
the user has to write the set corresponding to   in the editing area of the Proof Control Window | 
M
 
  | 
| * | FIN_FUN_IMG_R  | 
![]()  | 
the user has to write the set corresponding to   in the editing area of the Proof Control Window | 
M
 
  | 
| * | FIN_FUN_RAN_R  | 
![]()  | 
the user has to write the set corresponding to   in the editing area of the Proof Control Window | 
M
 
  | 
| * | FIN_FUN_DOM_R  | 
![]()  | 
the user has to write the set corresponding to   in the editing area of the Proof Control Window | 
M
 
  | 
| * | LOWER_BOUND_L  | 
![]()  | 
  must not contain any bound variable | 
M
 
  | 
| * | LOWER_BOUND_R  | 
![]()  | 
  must not contain any bound variable | 
M
 
  | 
| * | UPPER_BOUND_L  | 
![]()  | 
  must not contain any bound variable | 
M
 
  | 
| * | UPPER_BOUND_R  | 
![]()  | 
  must not contain any bound variable | 
M
 
  | 
| * | FIN_LT_0  | 
![]()  | 
M
 
  | |
| * | FIN_GE_0  | 
![]()  | 
M
 
  | |
CARD_INTERV  | 
![]()  | 
where   is WD strict | 
M
 
  | |
CARD_EMPTY_INTERV  | 
![]()  | 
where   is WD strict | 
M
 
  | |
| * | DERIV_LE_CARD  | 
![]()  | 
  and   bear the same type | 
M
 
  | 
| * | DERIV_GE_CARD  | 
![]()  | 
  and   bear the same type | 
M
 
  | 
| * | DERIV_LT_CARD  | 
![]()  | 
  and   bear the same type | 
M
 
  | 
| * | DERIV_GT_CARD  | 
![]()  | 
  and   bear the same type | 
M
 
  | 
| * | DERIV_EQUAL_CARD  | 
![]()  | 
  and   bear the same type | 
M
 
  | 
SIMP_CARD_SETMINUS_L  | 
![]()  | 
M | ||
SIMP_CARD_SETMINUS_R  | 
![]()  | 
M
 
  | ||
SIMP_CARD_CPROD_L  | 
![]()  | 
M | ||
SIMP_CARD_CPROD_R  | 
![]()  | 
M
 
  | ||
| * | FORALL_INST  | 
![]()  | 
  is instantiated with ![]()  | 
M
 
  | 
| * | FORALL_INST_MP  | 
![]()  | 
  is instantiated with   and a Modus Ponens is applied | 
M
 
  | 
| * | FORALL_INST_MT  | 
![]()  | 
  is instantiated with   and a Modus Tollens is applied | 
M
 
  | 
| * | CUT  | 
![]()  | 
hypothesis   is added | 
M
 
  | 
| * | EXISTS_INST  | 
![]()  | 
  is instantiated with ![]()  | 
M
 
  | 
| * | DISTINCT_CASE  | 
![]()  | 
case distinction on predicate ![]()  | 
M
 
  | 
| * | ONE_POINT_L  | 
![]()  | 
The rule can be applied with   as well as with ![]()  | 
A
 
  | 
| * | ONE_POINT_R  | 
![]()  | 
The rule can be applied with   as well as with ![]()  | 
A
 
  | 
| * | SIM_OV_REL  | 
![]()  | 
where   is one of  ,  ,  ,  ,  ,  ,  ,  ,  ,  , ![]()  | 
A
 
  | 
| * | SIM_OV_TREL  | 
![]()  | 
where   is one of  ,  ,  , ,  , ![]()  | 
A
 
  | 
| * | SIM_OV_PFUN  | 
![]()  | 
where   is one of  ,  ,  ,  ,  ,  , ![]()  | 
A
 
  | 
| * | SIM_OV_TFUN  | 
![]()  | 
where   is one of  ,  ,  , ![]()  | 
A
 
  | 
INDUC_NAT  | 
![]()  | 
  of type   appears free in   ;   is introduced as a fresh identifier | 
M
 
  | |
INDUC_NAT_COMPL  | 
![]()  | 
  of type   appears free in   ;   is introduced as a fresh identifier | 
M
 
  | 
Those following rules have been implemented in the reasoner GeneralizedModusPonens.
| Name | Rule | Side Condition | A/M | |
|---|---|---|---|---|
| * | GENMP_HYP_HYP  | 
![]()  | 
see below for ![]()  | 
A | 
| * | GENMP_NOT_HYP_HYP  | 
![]()  | 
see below for ![]()  | 
A | 
| * | GENMP_HYP_GOAL  | 
![]()  | 
see below for ![]()  | 
A | 
| * | GENMP_NOT_HYP_GOAL  | 
![]()  | 
see below for ![]()  | 
A | 
| * | GENMP_GOAL_HYP  | 
![]()  | 
see below for ![]()  | 
A | 
| * | GENMP_NOT_GOAL_HYP  | 
![]()  | 
see below for ![]()  | 
A | 
| * | GENMP_OR_GOAL_HYP  | 
![]()  | 
see below for ![]()  | 
A | 
| * | GENMP_OR_NOT_GOAL_HYP  | 
![]()  | 
see below for ![]()  | 
A | 
Thos following rules have been implemented in the MembershipGoal reasoner.
| Name | Rule | Side Condition | A/M
 
  | |
|---|---|---|---|---|
| * | SUBSET_SUBSETEQ  | 
![]()  | 
A | |
| * | DOM_SUBSET  | 
![]()  | 
A | |
| * | RAN_SUBSET  | 
![]()  | 
A | |
| * | EQUAL_SUBSETEQ_LR  | 
![]()  | 
A | |
| * | EQUAL_SUBSETEQ_RL  | 
![]()  | 
A | |
| * | IN_DOM_CPROD  | 
![]()  | 
A | |
| * | IN_RAN_CPROD  | 
![]()  | 
A | |
| * | IN_DOM_REL  | 
![]()  | 
A | |
| * | IN_RAN_REL  | 
![]()  | 
A | |
| * | SETENUM_SUBSET  | 
![]()  | 
A | |
| * | OVR_RIGHT_SUBSET  | 
![]()  | 
A | |
| * | RELSET_SUBSET_CPROD  | 
![]()  | 
where   is one of  ,  ,  ,  ,  ,  ,  ,  ,  ,  , ![]()  | 
A | 
| * | DERIV_IN_SUBSET  | 
![]()  | 
A | 
The conventions used in this table are described in Variations in HYP, CNTR and GenMP.
![]()  | 
![]()  | 
![]()  | 
Side Condition | 
|---|---|---|---|
![]()  | 
    ![]()  | 
    ![]()  | 
where a and b are integers | 
![]()  | 
    ![]()  | 
    ![]()  | 
|
![]()  | 
    ![]()  | 
    ![]()  | 
|
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
    ![]()  | 
    ![]()  | 
where A and B are sets | 
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
    ![]()  | 
    ![]()  | 
|
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
  ![]()  | 
  ![]()  | 
|
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
![]()  | 
![]()  | 
where e and f are scalars | 
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
![]()  | 
![]()  | 
|
![]()  | 
![]()  | 
See also Extension Proof Rules#Inference Rules.









 and 
 denote types and 
 is one of 
, 
, 
, 
, 
, 
, 
.
 is WD strict
 is one of 












 is a variable which is not free in 


 and 
 are not bound by 

 and 














 is WD strict

![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}](/images/math/0/3/8/0385bdd4c9cd892d9cf7289b1de32a3c.png)
 and 
 denote types.![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}](/images/math/1/3/f/13f3f5de8aa0fbd38b361bdbeb350c47.png)
![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}](/images/math/3/b/6/3b6a7e21221fc9df829e310d1f8e384b.png)
![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}](/images/math/e/0/f/e0f8105695bca22877758b8ba283cbec.png)
![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])}](/images/math/7/d/f/7dfac56e8c4269e247b888bd790b211d.png)
![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} }](/images/math/f/6/f/f6fd31552c994d9d3d298f9b5c82d3e9.png)



 in the editing area of the Proof Control Window

 is fresh



 in the editing area of the Proof Control Window![\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s])}](/images/math/0/5/1/051dae4a6e35406fa3ee03c69ada792f.png)





 in the editing area of the Proof Control Window
![\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s])}](/images/math/b/5/8/b5860ef7c2133d3b49f32fa2744c618f.png)



 must not contain any bound variable















![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}](/images/math/a/c/b/acb596a712a0f720a7d3238f967ccfe6.png)
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}](/images/math/e/2/5/e25e646ecaceca4cb4143a3e66dbb185.png)
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\lnot\textbf{Q} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\lnot\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}](/images/math/1/2/0/120d593d43a63bfd5fe1345bc3d2cd9e.png)

 is added

![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}](/images/math/8/b/1/8b19ec24619d8d756596ebe54616be06.png)
 as well as with 
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H}  \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }](/images/math/3/7/9/379ac43eaae96f14177427e9cbc89387.png)

, 
, 
, 
, 



 appears free in  
 is introduced as a fresh identifier



























 
 
 
 






 
 
 
 




 
 
 
 

 
 




