Inference Rules: Difference between revisions
From Event-B
				
				
				Jump to navigationJump to search
				
				
| imported>Josselin  Fix rules HYP_OR, GENMP_OR_GOAL_HYP, GENMP_OR_NOT_GOAL_HYP | imported>Nicolas m Removed induction on integers (was wrong), reviewed induciton on naturals | ||
| (13 intermediate revisions by 3 users not shown) | |||
| Line 10: | Line 10: | ||
| {{RRHeader}} | {{RRHeader}} | ||
| {{RRRow}}|*||{{Rulename|HYP}}|| <math>\frac{}{\textbf{H},\textbf{P | {{RRRow}}|*||{{Rulename|HYP}}|| <math>\frac{}{\textbf{H},\textbf{P} \;\;\vdash \;\; \textbf{P}^{\dagger}} </math>|| see below for <math>\textbf{P}^{\dagger}</math> || A | ||
| {{RRRow}}|*||{{Rulename|HYP_OR}}|| <math>\frac{}{\textbf{H},\textbf{Q | {{RRRow}}|*||{{Rulename|HYP_OR}}|| <math>\frac{}{\textbf{H},\textbf{Q} \;\;\vdash \;\; \textbf{P} \lor \ldots \lor  \textbf{Q}^{\dagger} \lor \ldots \lor \textbf{R}}</math> || see below for <math>\textbf{Q}^{\dagger}</math> || A | ||
| {{RRRow}}|*||{{Rulename|CNTR}}|| <math>\frac{}{\textbf{H},\;\textbf{P},\;\textbf{nP}^{\dagger} \;\;\vdash \;\; \textbf{Q}}</math> || see below for <math>\textbf{nP}^{\dagger}</math> || A | {{RRRow}}|*||{{Rulename|CNTR}}|| <math>\frac{}{\textbf{H},\;\textbf{P},\;\textbf{nP}^{\dagger} \;\;\vdash \;\; \textbf{Q}}</math> || see below for <math>\textbf{nP}^{\dagger}</math> || A | ||
| Line 95: | Line 95: | ||
| {{RRRow}}|*||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> ||  || M | {{RRRow}}|*||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> ||  || M | ||
| {{RRRow}}|||{{Rulename| | {{RRRow}}|||{{Rulename|EQV_LR}}|| <math>\frac{\textbf{H(Q)},\; \textbf{P} \leqv \textbf{Q}   | ||
| \;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q}   | \;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q}   | ||
| \;\;\vdash \;\; \textbf{G(P)}}</math> ||  || M | \;\;\vdash \;\; \textbf{G(P)}}</math> ||  || M | ||
| {{RRRow}}|||{{Rulename|EQV_RL}}|| <math>\frac{\textbf{H(P)},\; \textbf{P} \leqv \textbf{Q}  | |||
| \;\;\vdash\;\; \textbf{G(P)}}{\textbf{H(Q)},\;\textbf{P} \leqv \textbf{Q}  | |||
| \;\;\vdash \;\; \textbf{G(Q)}}</math> ||  || M | |||
| {{RRRow}}|*||{{Rulename|OV_SETENUM_L}}|| <math>\frac{\textbf{H},\; G=E    | {{RRRow}}|*||{{Rulename|OV_SETENUM_L}}|| <math>\frac{\textbf{H},\; G=E    | ||
| Line 224: | Line 228: | ||
| {{RRRow}}|*||{{Rulename|SIM_OV_TFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\tfun B} </math> || where <math>\mathit{op}</math> is one of <math>\tfun</math>, <math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A | {{RRRow}}|*||{{Rulename|SIM_OV_TFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\tfun B} </math> || where <math>\mathit{op}</math> is one of <math>\tfun</math>, <math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A | ||
| {{RRRow}}| ||{{Rulename|INDUC_NAT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; x\in\nat \qquad \textbf{H}, x=0 \;\;\vdash \;\; \textbf{P}(x) \qquad \textbf{H}, n\in\nat, \textbf{P}(n) \;\;\vdash \;\; \textbf{P}(n+1)}{\textbf{H} \;\;\vdash\;\; \textbf{P}(x)}</math> || <math>x</math> of type <math>\intg</math> appears free in  <math>\textbf{P}</math>; <math>n</math> is introduced as a fresh identifier || M | |||
| {{RRRow}}| ||{{Rulename|INDUC_NAT_COMPL}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; x\in\nat \qquad \textbf{H} \;\;\vdash \;\; \textbf{P}(0) \qquad \textbf{H}, n\in\nat, \forall k\qdot 0\leq k\land k < n \limp \textbf{P}(k) \;\;\vdash \;\; \textbf{P}(n)}{\textbf{H} \;\;\vdash\;\; \textbf{P}(x)}</math> || <math>x</math> of type <math>\intg</math> appears free in  <math>\textbf{P}</math>; <math>n</math> is introduced as a fresh identifier || M | |||
| |} | |} | ||
| Line 230: | Line 239: | ||
| Those following rules have been implemented in the reasoner GeneralizedModusPonens. | Those following rules have been implemented in the reasoner GeneralizedModusPonens. | ||
| {{RRHeader}} | {{RRHeader}} | ||
| {{RRRow}}|*||{{Rulename|GENMP_HYP_HYP}}|| <math> \frac{P,\varphi(\btrue) \vdash G}{P,\varphi(P) \vdash G} </math> ||  || A | {{RRRow}}|*||{{Rulename|GENMP_HYP_HYP}}|| <math> \frac{P,\varphi(\btrue) \vdash G}{P,\varphi(P^{\dagger}) \vdash G} </math> ||  see below for <math> P^{\dagger} </math> || A | ||
| {{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_HYP}}|| <math> \frac{\ | {{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_HYP}}|| <math> \frac{nP^{\dagger},\varphi(\bfalse) \vdash G}{nP^{\dagger},\varphi(P) \vdash G} </math> || see below for <math> P^{\dagger} </math> || A | ||
| {{RRRow}}|*||{{Rulename|GENMP_HYP_GOAL}}|| <math> \frac{P \vdash \varphi(\btrue)}{P \vdash \varphi(P)} </math> ||  | {{RRRow}}|*||{{Rulename|GENMP_HYP_GOAL}}|| <math> \frac{P \vdash \varphi(\btrue)}{P \vdash \varphi(P^{\dagger})} </math> || see below for <math> P^{\dagger} </math> || A | ||
| {{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_GOAL}}|| <math> \frac{\ | {{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_GOAL}}|| <math> \frac{nP^{\dagger} \vdash \varphi(\bfalse)}{nP^{\dagger} \vdash \varphi(P)} </math> || see below for <math> P^{\dagger} </math> || A | ||
| {{RRRow}}|*||{{Rulename|GENMP_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash  | {{RRRow}}|*||{{Rulename|GENMP_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash \lnot nG^{\dagger}}{H,\varphi(G)\vdash \lnot nG^{\dagger}} </math> || see below for <math> nG^{\dagger} </math> || A | ||
| {{RRRow}}|*||{{Rulename|GENMP_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash\ | {{RRRow}}|*||{{Rulename|GENMP_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash \lnot G}{H,\varphi(G^{\dagger})\vdash \lnot G} </math> || see below for <math> G^{\dagger} </math> || A | ||
| {{RRRow}}|*||{{Rulename|GENMP_OR_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash G_1\lor\cdots\lor  | {{RRRow}}|*||{{Rulename|GENMP_OR_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash G_1\lor\cdots\lor \lnot nG_i^{\dagger}\lor\cdots\lor G_n}{H,\varphi(G_i)\vdash G_1\lor\cdots\lor \lnot nG_i^{\dagger}\lor\cdots\lor G_n} </math> || see below for <math> nG_i^{\dagger} </math> || A | ||
| {{RRRow}}|*||{{Rulename|GENMP_OR_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash G_1\lor\cdots\lor  | {{RRRow}}|*||{{Rulename|GENMP_OR_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash G_1\lor\cdots\lor\ \lnot G_i\lor\cdots\lor G_n}{H,\varphi(G_i^{\dagger})\vdash G_1\lor\cdots\lor\ \lnot G_i\lor\cdots\lor G_n} </math> || see below for <math> G_i^{\dagger} </math> || A | ||
| |} | |} | ||
| Line 261: | Line 270: | ||
| |} | |} | ||
| The conventions used in this table are described in [[Variations in HYP, CNTR and GenMP]]. | |||
| {|class="RRHeader" text-align="left" border="1"  cellspacing="4" cellpadding="8" rules="all" frame="box" style="margin:1em 1em 1em 0; border-style:solid; border-color:#AAAAAA;  display:table; {{{style|}}}" | {|class="RRHeader" text-align="left" border="1"  cellspacing="4" cellpadding="8" rules="all" frame="box" style="margin:1em 1em 1em 0; border-style:solid; border-color:#AAAAAA;  display:table; {{{style|}}}" | ||
| ! <math>\textbf{P}</math> !! <math>\textbf{P}^{\dagger}</math> !! <math>\textbf{nP}^{\dagger}</math> !!  | ! <math>\textbf{P}</math> !! <math>\textbf{P}^{\dagger}</math> !! <math>\textbf{nP}^{\dagger}</math> !! Side Condition | ||
| {{RRRow}}| <math> a = b </math> || <math> b = a </math> || <math> \lnot b = a </math> ||  | {{RRRow}}| <math> a = b </math> || <math> a = b, \ \ b = a </math> <br /> <math> a \le b , \ \ b \ge a  </math> <br /> <math> a \ge b , \ \ b \le a </math> || <math> \lnot a = b, \ \ \lnot b = a </math> <br /> <math> a > b, \ \ b < a </math> <br /> <math> a < b, \ \ b > a </math> || where a and b are integers | ||
| {{RRRow}}| <math> a < b </math> || <math> \ | {{RRRow}}| <math> a < b </math> || <math> a < b, \ \ b > a </math> <br /> <math> a \le b, \ \ b \ge a </math> <br /> <math> \lnot a = b, \ \ \lnot b = a </math> || <math> a \ge b, \ \ b \le a </math> <br /> <math> a > b, \ \ b < a </math> <br /> <math> a = b, \ \ b = a </math> || | ||
| {{RRRow}}| <math> a > b </math> || <math> \ | {{RRRow}}| <math> a > b </math> || <math> a > b, \ \ b < a </math> <br /> <math> a \ge b, \ \ b \le a </math> <br /> <math> \lnot a = b, \ \ \lnot b = a </math> || <math> a \le b, \ \ b \ge a </math> <br /> <math> a < b, \ \ b > a </math> <br /> <math> a = b, \ \ b = a  </math> || | ||
| {{RRRow}}| <math> a \le b </math> || <math> \ | {{RRRow}}| <math> a \le b </math> || <math> a \le b, \ \ b \ge a </math> || <math> a > b, \ \ b < a </math> || | ||
| {{RRRow}}| <math> a \ge b </math> || <math> \ | {{RRRow}}| <math> a \ge b </math> || <math> a \ge b, \ \ b \le a </math> || <math> a < b, \ \ b > a </math> || | ||
| {{RRRow}}| <math> a  | {{RRRow}}| <math> \lnot a = b </math> || <math> \lnot a = b, \ \ \lnot b = a </math> || <math> a = b, \ \ b = a </math> || | ||
| {{RRRow}}| <math>  | {{RRRow}}| <math> A = B </math> || <math> A = B, \ \ B = A </math> <br /> <math> A \subseteq B, \ \ B \subseteq A  </math> <br /> <math> \lnot A \subset B, \ \ \lnot B \subset A </math> || <math> \lnot A = B, \ \ \lnot B = A </math> <br /> <math> \lnot A \subseteq B, \ \ \lnot B \subseteq A </math> <br /> <math> \ \ A \subset B, \ \ B \subset A </math> || where A and B are sets | ||
| {{RRRow}}| <math> \ | {{RRRow}}| <math> A \subseteq B </math> || <math> A \subseteq B, \lnot B \subset A </math> || <math> \lnot A \subseteq B, B \subset A </math> || | ||
| {{RRRow}}| <math> \ | {{RRRow}}| <math> A \subset B </math> || <math> A \subset B, \ \ A \subseteq B </math> <br /> <math> \lnot B \subset A, \ \ \lnot B \subseteq A </math> <br /> <math> \lnot A = B, \ \ \lnot B = A</math> || <math> \lnot A \subset B, \ \ \lnot A \subseteq B  </math> <br /> <math> B \subset A, \ \ B \subseteq A </math> <br /> <math> A = B, \ \ B = A </math>|| | ||
| {{RRRow}}| <math> \lnot  | {{RRRow}}| <math> \lnot A = B </math> || <math> \lnot A = B, \ \ \lnot B = A </math> || <math> A = B, \ \ B = A </math> || | ||
| {{RRRow}}| <math> \lnot  | {{RRRow}}| <math> \lnot A \subseteq B </math> || <math> \lnot A \subseteq B, \ \ \lnot A \subset B </math> <br /> <math> \lnot A = B, \ \ \lnot B = A </math> || <math> A \subseteq B, \ \ A \subset B </math> <br /> <math> A = B, \ \ B = A </math> || | ||
| {{RRRow}}| <math> \lnot  | {{RRRow}}| <math> \lnot A \subset B </math> || <math> \lnot A \subset B </math> || <math> A \subset B </math> || | ||
| {{RRRow}}| <math> \ | {{RRRow}}| <math> e = f </math> || <math> e = f, \ \ f = e </math> ||<math> \lnot e = f, \ \ \lnot f = e </math> || where e and f are scalars | ||
| {{RRRow}}| <math> \lnot  | {{RRRow}}| <math> \lnot e = f </math> || <math> \lnot e = f, \ \ \lnot  f = e </math> || <math> e = f, \ \ f = e </math> || | ||
| {{RRRow}}| <math> \textbf{P} </math> || <math> \textbf{P} </math> ||<math> \ | {{RRRow}}| <math> \textbf{P} </math> || <math> \textbf{P} </math> || <math> \lnot \textbf{P} </math> || | ||
| {{RRRow}}| <math> \lnot \textbf{P} </math> || || <math> \textbf{P} </math> || | |||
| |} | |} | ||
Revision as of 16:00, 23 June 2014
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
| Name | Rule | Side Condition | A/M 
 | |
|---|---|---|---|---|
| * | HYP |  | see below for  | A 
 | 
| * | HYP_OR |  | see below for  | A 
 | 
| * | CNTR |  | see below for  | A 
 | 
| * | FALSE_HYP |  | A 
 | |
| * | TRUE_GOAL |  | A 
 | |
| * | FUN_GOAL |  | where  and  denote types and  is one of  ,  ,  ,  ,  ,  ,  . | A 
 | 
| * | FUN_IMAGE_GOAL |  | where  denotes a set of relations (any arrow) and  is WD strict | M 
 | 
| FUN_GOAL_REC |  | where  and  denote types,  denotes a set of relations (any arrow) and  is one of  ,  ,  ,  ,  ,  ,  . | A 
 | |
| * | DBL_HYP |  | A 
 | |
| * | AND_L |  | A 
 | |
| * | AND_R |  | A 
 | |
| IMP_L1 |  | A 
 | ||
| * | IMP_R |  | A 
 | |
| * | IMP_AND_L |  | A 
 | |
| * | IMP_OR_L |  | A 
 | |
| * | AUTO_MH |  | A 
 | |
| * | NEG_IN_L |  | A 
 | |
| * | NEG_IN_R |  | A 
 | |
| * | XST_L |  | A 
 | |
| * | ALL_R |  | A 
 | |
| * | EQL_LR |  |  is a variable which is not free in  | A 
 | 
| * | EQL_RL |  |  is a variable which is not free in  | A 
 | 
| SUBSET_INTER |  | where  and  are not bound by  | A 
 | |
| IN_INTER |  | where  and  are not bound by  | A 
 | |
| NOTIN_INTER |  | where  and  are not bound by  | A 
 | |
| * | FIN_L_LOWER_BOUND_L |  | The goal is discharged | A 
 | 
| * | FIN_L_LOWER_BOUND_R |  | The goal is discharged | A 
 | 
| * | FIN_L_UPPER_BOUND_L |  | The goal is discharged | A 
 | 
| * | FIN_L_UPPER_BOUND_R |  | The goal is discharged | A 
 | 
| * | CONTRADICT_L |  | M 
 | |
| * | CONTRADICT_R |  | M 
 | |
| * | CASE |  | M 
 | |
| * | IMP_CASE |  | M 
 | |
| * | MH |  | M 
 | |
| * | HM |  | M 
 | |
| EQV_LR |  | M 
 | ||
| EQV_RL |  | M 
 | ||
| * | OV_SETENUM_L |  | where  is WD strict | A 
 | 
| * | OV_SETENUM_R |  | where  is WD strict | A 
 | 
| * | OV_L |  | where  is WD strict | A 
 | 
| * | OV_R |  | where  is WD strict | A 
 | 
| * | DIS_BINTER_R | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}](/images/math/0/3/8/0385bdd4c9cd892d9cf7289b1de32a3c.png) | where  and  denote types. | M 
 | 
| * | DIS_BINTER_L | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}](/images/math/1/3/f/13f3f5de8aa0fbd38b361bdbeb350c47.png) | where  and  denote types. | M 
 | 
| * | DIS_SETMINUS_R | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}](/images/math/3/b/6/3b6a7e21221fc9df829e310d1f8e384b.png) | where  and  denote types. | M 
 | 
| * | DIS_SETMINUS_L | ![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B    \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}](/images/math/e/0/f/e0f8105695bca22877758b8ba283cbec.png) | where  and  denote types. | M 
 | 
| * | SIM_REL_IMAGE_R | ![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \;  \textbf{Q}(f[\{ E\} ])}](/images/math/7/d/f/7dfac56e8c4269e247b888bd790b211d.png) | M 
 | |
| * | SIM_REL_IMAGE_L | ![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} }](/images/math/f/6/f/f6fd31552c994d9d3d298f9b5c82d3e9.png) | M 
 | |
| * | SIM_FCOMP_R |  | M 
 | |
| * | SIM_FCOMP_L |  | M 
 | |
| * | FIN_SUBSETEQ_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_BINTER_R |  | M 
 | |
| FIN_KINTER_R |  | where  is fresh | M 
 | |
| FIN_QINTER_R |  | M 
 | ||
| * | FIN_SETMINUS_R |  | M 
 | |
| FIN_REL |  | where  denotes a set of relations (any arrow) | A 
 | |
| * | FIN_REL_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_REL_IMG_R | ![\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s])}](/images/math/0/5/1/051dae4a6e35406fa3ee03c69ada792f.png) | M 
 | |
| * | FIN_REL_RAN_R |  | M 
 | |
| * | FIN_REL_DOM_R |  | M 
 | |
| FIN_FUN_DOM |  | where  is one of  ,  ,  ,  ,  ,  ,  | A 
 | |
| FIN_FUN_RAN |  | where  is one of  ,  ,  | A 
 | |
| * | FIN_FUN1_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN2_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_IMG_R | ![\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s])}](/images/math/b/5/8/b5860ef7c2133d3b49f32fa2744c618f.png) | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_RAN_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | FIN_FUN_DOM_R |  | the user has to write the set corresponding to  in the editing area of the Proof Control Window | M 
 | 
| * | LOWER_BOUND_L |  |  must not contain any bound variable | M 
 | 
| * | LOWER_BOUND_R |  |  must not contain any bound variable | M 
 | 
| * | UPPER_BOUND_L |  |  must not contain any bound variable | M 
 | 
| * | UPPER_BOUND_R |  |  must not contain any bound variable | M 
 | 
| * | FIN_LT_0 |  | M 
 | |
| * | FIN_GE_0 |  | M 
 | |
| CARD_INTERV |  | where  is WD strict | M 
 | |
| CARD_EMPTY_INTERV |  | where  is WD strict | M 
 | |
| * | DERIV_LE_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_GE_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_LT_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_GT_CARD |  |  and  bear the same type | M 
 | 
| * | DERIV_EQUAL_CARD |  |  and  bear the same type | M 
 | 
| SIMP_CARD_SETMINUS_L |  | M | ||
| SIMP_CARD_SETMINUS_R |  | M 
 | ||
| SIMP_CARD_CPROD_L |  | M | ||
| SIMP_CARD_CPROD_R |  | M 
 | ||
| * | FORALL_INST | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P}  \;\;\vdash\;\; \textbf{G}}](/images/math/a/c/b/acb596a712a0f720a7d3238f967ccfe6.png) |  is instantiated with  | M 
 | 
| * | FORALL_INST_MP | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}](/images/math/e/2/5/e25e646ecaceca4cb4143a3e66dbb185.png) |  is instantiated with  and a Modus Ponens is applied | M 
 | 
| * | FORALL_INST_MT | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\lnot\textbf{Q} \qquad  \textbf{H}, {WD}(E), [x \bcmeq E]\lnot\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q}  \;\;\vdash\;\; \textbf{G}}](/images/math/1/2/0/120d593d43a63bfd5fe1345bc3d2cd9e.png) |  is instantiated with  and a Modus Tollens is applied | M 
 | 
| * | CUT |  | hypothesis  is added | M 
 | 
| * | EXISTS_INST |  |  is instantiated with  | M 
 | 
| * | DISTINCT_CASE |  | case distinction on predicate  | M 
 | 
| * | ONE_POINT_L | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R}  \;\;\vdash\;\; \textbf{G}}](/images/math/8/b/1/8b19ec24619d8d756596ebe54616be06.png) | The rule can be applied with  as well as with  | A 
 | 
| * | ONE_POINT_R | ![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad  \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H}  \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }](/images/math/3/7/9/379ac43eaae96f14177427e9cbc89387.png) | The rule can be applied with  as well as with  | A 
 | 
| * | SIM_OV_REL |  | where  is one of  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  | A 
 | 
| * | SIM_OV_TREL |  | where  is one of  ,  ,  ,  ,  ,  | A 
 | 
| * | SIM_OV_PFUN |  | where  is one of  ,  ,  ,  ,  ,  ,  | A 
 | 
| * | SIM_OV_TFUN |  | where  is one of  ,  ,  ,  | A 
 | 
| INDUC_NAT |  |  of type  appears free in  ;  is introduced as a fresh identifier | M 
 | |
| INDUC_NAT_COMPL |  |  of type  appears free in  ;  is introduced as a fresh identifier | M 
 | 
Those following rules have been implemented in the reasoner GeneralizedModusPonens.
| Name | Rule | Side Condition | A/M | |
|---|---|---|---|---|
| * | GENMP_HYP_HYP |  | see below for  | A | 
| * | GENMP_NOT_HYP_HYP |  | see below for  | A | 
| * | GENMP_HYP_GOAL |  | see below for  | A | 
| * | GENMP_NOT_HYP_GOAL |  | see below for  | A | 
| * | GENMP_GOAL_HYP |  | see below for  | A | 
| * | GENMP_NOT_GOAL_HYP |  | see below for  | A | 
| * | GENMP_OR_GOAL_HYP |  | see below for  | A | 
| * | GENMP_OR_NOT_GOAL_HYP |  | see below for  | A | 
Thos following rules have been implemented in the MembershipGoal reasoner.
| Name | Rule | Side Condition | A/M 
 | |
|---|---|---|---|---|
| * | SUBSET_SUBSETEQ |  | A | |
| * | DOM_SUBSET |  | A | |
| * | RAN_SUBSET |  | A | |
| * | EQUAL_SUBSETEQ_LR |  | A | |
| * | EQUAL_SUBSETEQ_RL |  | A | |
| * | IN_DOM_CPROD |  | A | |
| * | IN_RAN_CPROD |  | A | |
| * | IN_DOM_REL |  | A | |
| * | IN_RAN_REL |  | A | |
| * | SETENUM_SUBSET |  | A | |
| * | OVR_RIGHT_SUBSET |  | A | |
| * | RELSET_SUBSET_CPROD |  | where  is one of  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  | A | 
| * | DERIV_IN_SUBSET |  | A | 
The conventions used in this table are described in Variations in HYP, CNTR and GenMP.
|  |  |  | Side Condition | 
|---|---|---|---|
|  |      |      | where a and b are integers | 
|  |      |      | |
|  |      |      | |
|  |  |  | |
|  |  |  | |
|  |  |  | |
|  |      |      | where A and B are sets | 
|  |  |  | |
|  |      |      | |
|  |  |  | |
|  |    |    | |
|  |  |  | |
|  |  |  | where e and f are scalars | 
|  |  |  | |
|  |  |  | |
|  |  | 
See also Extension Proof Rules#Inference Rules.
