Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Josselin added space in array for improved readability |
Rule FIN_COMPSET_R has been implemented in Rodin 3.9 |
||
| (10 intermediate revisions by 4 users not shown) | |||
| Line 95: | Line 95: | ||
{{RRRow}}|*||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> || || M | {{RRRow}}|*||{{Rulename|HM}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;\neg\,\textbf{Q} \qquad \textbf{H},\; \neg\,\textbf{P} \;\;\vdash \;\; \textbf{R} }{\textbf{H},\;\textbf{P} \limp \textbf{Q} \;\;\vdash \;\; \textbf{R}}</math> || || M | ||
{{RRRow}}|||{{Rulename| | {{RRRow}}|*||{{Rulename|EQV_LR}}|| <math>\frac{\textbf{H(Q)},\; \textbf{P} \leqv \textbf{Q} | ||
\;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q} | \;\;\vdash\;\; \textbf{G(Q)}}{\textbf{H(P)},\;\textbf{P} \leqv \textbf{Q} | ||
\;\;\vdash \;\; \textbf{G(P)}}</math> || || M | \;\;\vdash \;\; \textbf{G(P)}}</math> || || M | ||
{{RRRow}}|*||{{Rulename|EQV_RL}}|| <math>\frac{\textbf{H(P)},\; \textbf{P} \leqv \textbf{Q} | |||
\;\;\vdash\;\; \textbf{G(P)}}{\textbf{H(Q)},\;\textbf{P} \leqv \textbf{Q} | |||
\;\;\vdash \;\; \textbf{G(Q)}}</math> || || M | |||
{{RRRow}}|*||{{Rulename|OV_SETENUM_L}}|| <math>\frac{\textbf{H},\; G=E | {{RRRow}}|*||{{Rulename|OV_SETENUM_L}}|| <math>\frac{\textbf{H},\; G=E | ||
| Line 134: | Line 138: | ||
\;\; \finite\,(S \;\binter\;\ldots \;\binter\; T)}</math> || || M | \;\; \finite\,(S \;\binter\;\ldots \;\binter\; T)}</math> || || M | ||
{{RRRow}}| ||{{Rulename|FIN_KINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | {{RRRow}}|*||{{Rulename|FIN_KINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
\;\;\exists s\, \qdot\, s \in S \land \finite\,(s)}{\textbf{H} \;\;\vdash | \;\;\exists s\, \qdot\, s \in S \land \finite\,(s)}{\textbf{H} \;\;\vdash | ||
\;\; \finite\,(\inter(S))}</math> || where <math>s</math> is fresh || M | \;\; \finite\,(\inter(S))}</math> || where <math>s</math> is fresh || M | ||
{{RRRow}}| ||{{Rulename|FIN_QINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | {{RRRow}}|*||{{Rulename|FIN_QINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
\;\;\exists s\, \qdot\, P \land \finite\,(E)}{\textbf{H} \;\;\vdash | \;\;\exists s\, \qdot\, P \land \finite\,(E)}{\textbf{H} \;\;\vdash | ||
\;\; \finite\,(\Inter s\,\qdot\,P\,\mid\,E)}</math> || || M | \;\; \finite\,(\Inter s\,\qdot\,P\,\mid\,E)}</math> || || M | ||
{{RRRow}}|*||{{Rulename|FIN_BUNION_R}}|| <math>\frac{\textbf{H} \;\;\vdash | |||
\;\;\finite\,(S) \;\land\;\ldots \;\land\; \finite\,(T)}{\textbf{H} \;\;\vdash | |||
\;\; \finite\,(S \;\bunion\;\ldots \;\bunion\; T)}</math> || || M | |||
{{RRRow}}|*||{{Rulename|FIN_KUNION_R}}|| <math>\frac{\textbf{H} \;\;\vdash | |||
\;\; \finite\,(S) \;\land\; (\forall s\, \qdot\, s \in S \limp \finite\,(s))}{\textbf{H} \;\;\vdash | |||
\;\; \finite\,(\union(S))}</math> || where <math>s</math> is fresh || M | |||
{{RRRow}}|*||{{Rulename|FIN_QUNION_R}}|| <math>\frac{\textbf{H} \;\;\vdash | |||
\;\; \finite(\{s\qdot P\mid E\})\;\land\;(\forall s\, \qdot\, P \limp \finite\,(E))}{\textbf{H} \;\;\vdash | |||
\;\; \finite\,(\Union s\,\qdot\,P\,\mid\,E)}</math> || || M | |||
{{RRRow}}|*||{{Rulename|FIN_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash | {{RRRow}}|*||{{Rulename|FIN_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
\;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T)}</math> || || M | \;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T)}</math> || || M | ||
{{RRRow}}|*||{{Rulename|FIN_COMPSET_R}}|| <math>\frac{\textbf{H} \;\;\vdash | |||
\;\;\finite\,(\{x \,\mid\, P(x)\})}{\textbf{H} \;\;\vdash \;\; \finite\,(\{x \,\qdot\, P(x) \,\mid\, F(x)\})}</math> || || M | |||
{{RRRow}}| ||{{Rulename|FIN_REL}}|| <math>\frac{}{\textbf{H},\; r\in S\;\mathit{op}\;T,\; \finite\,(S),\; \finite\,(T) \;\;\vdash \;\; \finite\,(r)}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) || A | {{RRRow}}| ||{{Rulename|FIN_REL}}|| <math>\frac{}{\textbf{H},\; r\in S\;\mathit{op}\;T,\; \finite\,(S),\; \finite\,(T) \;\;\vdash \;\; \finite\,(r)}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) || A | ||
| Line 224: | Line 243: | ||
{{RRRow}}|*||{{Rulename|SIM_OV_TFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\tfun B} </math> || where <math>\mathit{op}</math> is one of <math>\tfun</math>, <math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A | {{RRRow}}|*||{{Rulename|SIM_OV_TFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash y\in B}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto y\right\}\in A\tfun B} </math> || where <math>\mathit{op}</math> is one of <math>\tfun</math>, <math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A | ||
{{RRRow}}| ||{{Rulename|INDUC_NAT}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; x\in\nat \qquad \textbf{H}, x=0 \;\;\vdash \;\; \textbf{P}(x) \qquad \textbf{H}, n\in\nat, \textbf{P}(n) \;\;\vdash \;\; \textbf{P}(n+1)}{\textbf{H} \;\;\vdash\;\; \textbf{P}(x)}</math> || <math>x</math> of type <math>\intg</math> appears free in <math>\textbf{P}</math>; <math>n</math> is introduced as a fresh identifier || M | |||
{{RRRow}}| ||{{Rulename|INDUC_NAT_COMPL}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; x\in\nat \qquad \textbf{H} \;\;\vdash \;\; \textbf{P}(0) \qquad \textbf{H}, n\in\nat, \forall k\qdot 0\leq k\land k < n \limp \textbf{P}(k) \;\;\vdash \;\; \textbf{P}(n)}{\textbf{H} \;\;\vdash\;\; \textbf{P}(x)}</math> || <math>x</math> of type <math>\intg</math> appears free in <math>\textbf{P}</math>; <math>n</math> is introduced as a fresh identifier || M | |||
|} | |} | ||
| Line 262: | Line 286: | ||
The conventions used in this table are described in [[ | The conventions used in this table are described in [[Variations in HYP, CNTR and GenMP]]. | ||
{|class="RRHeader" text-align="left" border="1" cellspacing="4" cellpadding="8" rules="all" frame="box" style="margin:1em 1em 1em 0; border-style:solid; border-color:#AAAAAA; display:table; {{{style|}}}" | {|class="RRHeader" text-align="left" border="1" cellspacing="4" cellpadding="8" rules="all" frame="box" style="margin:1em 1em 1em 0; border-style:solid; border-color:#AAAAAA; display:table; {{{style|}}}" | ||
| Line 278: | Line 302: | ||
{{RRRow}}| <math> \lnot A \subseteq B </math> || <math> \lnot A \subseteq B, \ \ \lnot A \subset B </math> <br /> <math> \lnot A = B, \ \ \lnot B = A </math> || <math> A \subseteq B, \ \ A \subset B </math> <br /> <math> A = B, \ \ B = A </math> || | {{RRRow}}| <math> \lnot A \subseteq B </math> || <math> \lnot A \subseteq B, \ \ \lnot A \subset B </math> <br /> <math> \lnot A = B, \ \ \lnot B = A </math> || <math> A \subseteq B, \ \ A \subset B </math> <br /> <math> A = B, \ \ B = A </math> || | ||
{{RRRow}}| <math> \lnot A \subset B </math> || <math> \lnot A \subset B </math> || <math> A \subset B </math> || | {{RRRow}}| <math> \lnot A \subset B </math> || <math> \lnot A \subset B </math> || <math> A \subset B </math> || | ||
{{RRRow}}| <math> e = f </math> || <math> e = f, \ \ f = e </math> ||<math> \lnot e = f, \ \ \lnot f = e </math> || where e and f are scalars | |||
{{RRRow}}| <math> \lnot e = f </math> || <math> \lnot e = f, \ \ \lnot f = e </math> || <math> e = f, \ \ f = e </math> || | |||
{{RRRow}}| <math> \textbf{P} </math> || <math> \textbf{P} </math> || <math> \lnot \textbf{P} </math> || | {{RRRow}}| <math> \textbf{P} </math> || <math> \textbf{P} </math> || <math> \lnot \textbf{P} </math> || | ||
{{RRRow}}| <math> \lnot \textbf{P} </math> || || <math> \textbf{P} </math> || | {{RRRow}}| <math> \lnot \textbf{P} </math> || || <math> \textbf{P} </math> || | ||
Latest revision as of 15:10, 3 June 2024
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
| Name | Rule | Side Condition | A/M
| |
|---|---|---|---|---|
| * | HYP |
![]() |
see below for ![]() |
A
|
| * | HYP_OR |
![]() |
see below for ![]() |
A
|
| * | CNTR |
![]() |
see below for ![]() |
A
|
| * | FALSE_HYP |
![]() |
A
| |
| * | TRUE_GOAL |
![]() |
A
| |
| * | FUN_GOAL |
![]() |
where and denote types and is one of , , , , , , . |
A
|
| * | FUN_IMAGE_GOAL |
![]() |
where denotes a set of relations (any arrow) and is WD strict |
M
|
FUN_GOAL_REC |
![]() |
where and denote types, denotes a set of relations (any arrow) and is one of , , , , , , . |
A
| |
| * | DBL_HYP |
![]() |
A
| |
| * | AND_L |
![]() |
A
| |
| * | AND_R |
![]() |
A
| |
IMP_L1 |
![]() |
A
| ||
| * | IMP_R |
![]() |
A
| |
| * | IMP_AND_L |
![]() |
A
| |
| * | IMP_OR_L |
![]() |
A
| |
| * | AUTO_MH |
![]() |
A
| |
| * | NEG_IN_L |
![]() |
A
| |
| * | NEG_IN_R |
![]() |
A
| |
| * | XST_L |
![]() |
A
| |
| * | ALL_R |
![]() |
A
| |
| * | EQL_LR |
![]() |
is a variable which is not free in ![]() |
A
|
| * | EQL_RL |
![]() |
is a variable which is not free in ![]() |
A
|
SUBSET_INTER |
![]() |
where and are not bound by ![]() |
A
| |
IN_INTER |
![]() |
where and are not bound by ![]() |
A
| |
NOTIN_INTER |
![]() |
where and are not bound by ![]() |
A
| |
| * | FIN_L_LOWER_BOUND_L |
![]() |
The goal is discharged | A
|
| * | FIN_L_LOWER_BOUND_R |
![]() |
The goal is discharged | A
|
| * | FIN_L_UPPER_BOUND_L |
![]() |
The goal is discharged | A
|
| * | FIN_L_UPPER_BOUND_R |
![]() |
The goal is discharged | A
|
| * | CONTRADICT_L |
![]() |
M
| |
| * | CONTRADICT_R |
![]() |
M
| |
| * | CASE |
![]() |
M
| |
| * | IMP_CASE |
![]() |
M
| |
| * | MH |
![]() |
M
| |
| * | HM |
![]() |
M
| |
| * | EQV_LR |
![]() |
M
| |
| * | EQV_RL |
![]() |
M
| |
| * | OV_SETENUM_L |
![]() |
where is WD strict |
A
|
| * | OV_SETENUM_R |
![]() |
where is WD strict |
A
|
| * | OV_L |
![]() |
where is WD strict |
A
|
| * | OV_R |
![]() |
where is WD strict |
A
|
| * | DIS_BINTER_R |
![]() |
where and denote types. |
M
|
| * | DIS_BINTER_L |
![]() |
where and denote types. |
M
|
| * | DIS_SETMINUS_R |
![]() |
where and denote types. |
M
|
| * | DIS_SETMINUS_L |
![]() |
where and denote types. |
M
|
| * | SIM_REL_IMAGE_R |
![]() |
M
| |
| * | SIM_REL_IMAGE_L |
![]() |
M
| |
| * | SIM_FCOMP_R |
![]() |
M
| |
| * | SIM_FCOMP_L |
![]() |
M
| |
| * | FIN_SUBSETEQ_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_BINTER_R |
![]() |
M
| |
| * | FIN_KINTER_R |
![]() |
where is fresh |
M
|
| * | FIN_QINTER_R |
![]() |
M
| |
| * | FIN_BUNION_R |
![]() |
M
| |
| * | FIN_KUNION_R |
![]() |
where is fresh |
M
|
| * | FIN_QUNION_R |
![]() |
M
| |
| * | FIN_SETMINUS_R |
![]() |
M
| |
| * | FIN_COMPSET_R |
![]() |
M
| |
FIN_REL |
![]() |
where denotes a set of relations (any arrow) |
A
| |
| * | FIN_REL_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_REL_IMG_R |
![]() |
M
| |
| * | FIN_REL_RAN_R |
![]() |
M
| |
| * | FIN_REL_DOM_R |
![]() |
M
| |
FIN_FUN_DOM |
![]() |
where is one of , , , , , , ![]() |
A
| |
FIN_FUN_RAN |
![]() |
where is one of , , ![]() |
A
| |
| * | FIN_FUN1_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN2_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN_IMG_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN_RAN_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | FIN_FUN_DOM_R |
![]() |
the user has to write the set corresponding to in the editing area of the Proof Control Window |
M
|
| * | LOWER_BOUND_L |
![]() |
must not contain any bound variable |
M
|
| * | LOWER_BOUND_R |
![]() |
must not contain any bound variable |
M
|
| * | UPPER_BOUND_L |
![]() |
must not contain any bound variable |
M
|
| * | UPPER_BOUND_R |
![]() |
must not contain any bound variable |
M
|
| * | FIN_LT_0 |
![]() |
M
| |
| * | FIN_GE_0 |
![]() |
M
| |
CARD_INTERV |
![]() |
where is WD strict |
M
| |
CARD_EMPTY_INTERV |
![]() |
where is WD strict |
M
| |
| * | DERIV_LE_CARD |
![]() |
and bear the same type |
M
|
| * | DERIV_GE_CARD |
![]() |
and bear the same type |
M
|
| * | DERIV_LT_CARD |
![]() |
and bear the same type |
M
|
| * | DERIV_GT_CARD |
![]() |
and bear the same type |
M
|
| * | DERIV_EQUAL_CARD |
![]() |
and bear the same type |
M
|
SIMP_CARD_SETMINUS_L |
![]() |
M | ||
SIMP_CARD_SETMINUS_R |
![]() |
M
| ||
SIMP_CARD_CPROD_L |
![]() |
M | ||
SIMP_CARD_CPROD_R |
![]() |
M
| ||
| * | FORALL_INST |
![]() |
is instantiated with ![]() |
M
|
| * | FORALL_INST_MP |
![]() |
is instantiated with and a Modus Ponens is applied |
M
|
| * | FORALL_INST_MT |
![]() |
is instantiated with and a Modus Tollens is applied |
M
|
| * | CUT |
![]() |
hypothesis is added |
M
|
| * | EXISTS_INST |
![]() |
is instantiated with ![]() |
M
|
| * | DISTINCT_CASE |
![]() |
case distinction on predicate ![]() |
M
|
| * | ONE_POINT_L |
![]() |
The rule can be applied with as well as with ![]() |
A
|
| * | ONE_POINT_R |
![]() |
The rule can be applied with as well as with ![]() |
A
|
| * | SIM_OV_REL |
![]() |
where is one of , , , , , , , , , , ![]() |
A
|
| * | SIM_OV_TREL |
![]() |
where is one of , , , , , ![]() |
A
|
| * | SIM_OV_PFUN |
![]() |
where is one of , , , , , , ![]() |
A
|
| * | SIM_OV_TFUN |
![]() |
where is one of , , , ![]() |
A
|
INDUC_NAT |
![]() |
of type appears free in ; is introduced as a fresh identifier |
M
| |
INDUC_NAT_COMPL |
![]() |
of type appears free in ; is introduced as a fresh identifier |
M
|
Those following rules have been implemented in the reasoner GeneralizedModusPonens.
| Name | Rule | Side Condition | A/M | |
|---|---|---|---|---|
| * | GENMP_HYP_HYP |
![]() |
see below for ![]() |
A |
| * | GENMP_NOT_HYP_HYP |
![]() |
see below for ![]() |
A |
| * | GENMP_HYP_GOAL |
![]() |
see below for ![]() |
A |
| * | GENMP_NOT_HYP_GOAL |
![]() |
see below for ![]() |
A |
| * | GENMP_GOAL_HYP |
![]() |
see below for ![]() |
A |
| * | GENMP_NOT_GOAL_HYP |
![]() |
see below for ![]() |
A |
| * | GENMP_OR_GOAL_HYP |
![]() |
see below for ![]() |
A |
| * | GENMP_OR_NOT_GOAL_HYP |
![]() |
see below for ![]() |
A |
Thos following rules have been implemented in the MembershipGoal reasoner.
| Name | Rule | Side Condition | A/M
| |
|---|---|---|---|---|
| * | SUBSET_SUBSETEQ |
![]() |
A | |
| * | DOM_SUBSET |
![]() |
A | |
| * | RAN_SUBSET |
![]() |
A | |
| * | EQUAL_SUBSETEQ_LR |
![]() |
A | |
| * | EQUAL_SUBSETEQ_RL |
![]() |
A | |
| * | IN_DOM_CPROD |
![]() |
A | |
| * | IN_RAN_CPROD |
![]() |
A | |
| * | IN_DOM_REL |
![]() |
A | |
| * | IN_RAN_REL |
![]() |
A | |
| * | SETENUM_SUBSET |
![]() |
A | |
| * | OVR_RIGHT_SUBSET |
![]() |
A | |
| * | RELSET_SUBSET_CPROD |
![]() |
where is one of , , , , , , , , , , ![]() |
A |
| * | DERIV_IN_SUBSET |
![]() |
A |
The conventions used in this table are described in Variations in HYP, CNTR and GenMP.
![]() |
![]() |
![]() |
Side Condition |
|---|---|---|---|
![]() |
![]() |
![]() |
where a and b are integers |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
where A and B are sets |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
where e and f are scalars |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
|
![]() |
![]() |
See also Extension Proof Rules#Inference Rules.









and
denote types and
is one of
,
,
,
,
,
,
.
is WD strict
is one of 












is a variable which is not free in 


and
are not bound by 

and 














is WD strict

![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}](/images/math/0/3/8/0385bdd4c9cd892d9cf7289b1de32a3c.png)
and
denote types.![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}](/images/math/1/3/f/13f3f5de8aa0fbd38b361bdbeb350c47.png)
![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}](/images/math/3/b/6/3b6a7e21221fc9df829e310d1f8e384b.png)
![\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}](/images/math/e/0/f/e0f8105695bca22877758b8ba283cbec.png)
![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])}](/images/math/7/d/f/7dfac56e8c4269e247b888bd790b211d.png)
![\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} }](/images/math/f/6/f/f6fd31552c994d9d3d298f9b5c82d3e9.png)



in the editing area of the Proof Control Window

is fresh







in the editing area of the Proof Control Window![\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(r[s])}](/images/math/0/5/1/051dae4a6e35406fa3ee03c69ada792f.png)





in the editing area of the Proof Control Window
![\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(s) }{\textbf{H} \;\;\vdash \;\; \finite\,(f[s])}](/images/math/b/5/8/b5860ef7c2133d3b49f32fa2744c618f.png)



must not contain any bound variable















![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}](/images/math/a/c/b/acb596a712a0f720a7d3238f967ccfe6.png)
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\textbf{P} \qquad \textbf{H}, {WD}(E), [x \bcmeq E]\textbf{Q} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q} \;\;\vdash\;\; \textbf{G}}](/images/math/e/2/5/e25e646ecaceca4cb4143a3e66dbb185.png)
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, {WD}(E) \;\;\vdash \;\; [x \bcmeq E]\lnot\textbf{Q} \qquad \textbf{H}, {WD}(E), [x \bcmeq E]\lnot\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \limp \textbf{Q} \;\;\vdash\;\; \textbf{G}}](/images/math/1/2/0/120d593d43a63bfd5fe1345bc3d2cd9e.png)

is added

![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H}, \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} \;\;\vdash \;\; \textbf{G}}{ \textbf{H}, \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} \;\;\vdash\;\; \textbf{G}}](/images/math/8/b/1/8b19ec24619d8d756596ebe54616be06.png)
as well as with 
![\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H} \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }](/images/math/3/7/9/379ac43eaae96f14177427e9cbc89387.png)

,
,
,
, 



appears free in
is introduced as a fresh identifier
















































