Empty Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Josselin Added note |
imported>Josselin Fixed rules SIMP_CPROD_EQUAL_EMPTY, SIMP_UPTO_EQUAL_EMPTY, SIMP_SREL_EQUAL_EMPTY, SIMP_STREL_EQUAL_EMPTY (changed rule to predicate) |
||
Line 17: | Line 17: | ||
{{RRRow}}|||{{Rulename|SIMP_NATURAL1_EQUAL_EMPTY}}||<math> \natn = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | {{RRRow}}|||{{Rulename|SIMP_NATURAL1_EQUAL_EMPTY}}||<math> \natn = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_EQUAL_EMPTY}}||<math> \mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse </math>|| where <math>\mathit{Ty}</math> is a type expression || A | {{RRRow}}|*||{{Rulename|SIMP_TYPE_EQUAL_EMPTY}}||<math> \mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse </math>|| where <math>\mathit{Ty}</math> is a type expression || A | ||
{{RRRow}}|||{{Rulename|SIMP_CPROD_EQUAL_EMPTY}}||<math> S \cprod T \;\;\defi\;\; S = \emptyset \lor T = \emptyset </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_CPROD_EQUAL_EMPTY}}||<math> S \cprod T = \emptyset \;\;\defi\;\; S = \emptyset \lor T = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_UPTO_EQUAL_EMPTY}}||<math> i \upto j \;\;\defi\;\; i > j </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_UPTO_EQUAL_EMPTY}}||<math> i \upto j = \emptyset \;\;\defi\;\; i > j </math>|| || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_REL}}||<math> A \rel B = \emptyset \;\;\defi\;\; \bfalse </math>|| idem for operators <math>\pfun \pinj</math> || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_REL}}||<math> A \rel B = \emptyset \;\;\defi\;\; \bfalse </math>|| idem for operators <math>\pfun \pinj</math> || A | ||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_RELDOM}}||<math> A \trel B = \emptyset \;\;\defi\;\; \lnot\, A = \emptyset \land B = \emptyset </math>|| idem for operator <math>\tfun</math> || A | {{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_RELDOM}}||<math> A \trel B = \emptyset \;\;\defi\;\; \lnot\, A = \emptyset \land B = \emptyset </math>|| idem for operator <math>\tfun</math> || A | ||
{{RRRow}}|||{{Rulename|SIMP_SREL_EQUAL_EMPTY}}||<math> A \srel B \;\;\defi\;\; A = \emptyset \land \lnot\,B = \emptyset </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_SREL_EQUAL_EMPTY}}||<math> A \srel B = \emptyset \;\;\defi\;\; A = \emptyset \land \lnot\,B = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_STREL_EQUAL_EMPTY}}||<math> A \strel B \;\;\defi\;\; (A = \emptyset \leqv \lnot\,B = \emptyset) </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_STREL_EQUAL_EMPTY}}||<math> A \strel B = \emptyset \;\;\defi\;\; (A = \emptyset \leqv \lnot\,B = \emptyset) </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_DOM_EQUAL_EMPTY}}||<math> \dom (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_DOM_EQUAL_EMPTY}}||<math> \dom (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_RAN_EQUAL_EMPTY}}||<math> \ran (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_RAN_EQUAL_EMPTY}}||<math> \ran (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A |
Revision as of 07:52, 2 May 2013
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules. The rewrite rules with the following patterns and are the same as . So these rules could be applied to and .
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | DEF_SPECIAL_NOT_EQUAL |
where is not free in | M | |
SIMP_SETENUM_EQUAL_EMPTY |
A | |||
* | SIMP_SPECIAL_EQUAL_COMPSET |
A | ||
SIMP_BUNION_EQUAL_EMPTY |
A | |||
SIMP_SETMINUS_EQUAL_EMPTY |
A | |||
SIMP_POW_EQUAL_EMPTY |
A | |||
SIMP_POW1_EQUAL_EMPTY |
A | |||
SIMP_KUNION_EQUAL_EMPTY |
A | |||
SIMP_QUNION_EQUAL_EMPTY |
A | |||
SIMP_NATURAL_EQUAL_EMPTY |
A | |||
SIMP_NATURAL1_EQUAL_EMPTY |
A | |||
* | SIMP_TYPE_EQUAL_EMPTY |
where is a type expression | A | |
SIMP_CPROD_EQUAL_EMPTY |
A | |||
SIMP_UPTO_EQUAL_EMPTY |
A | |||
* | SIMP_SPECIAL_EQUAL_REL |
idem for operators | A | |
* | SIMP_SPECIAL_EQUAL_RELDOM |
idem for operator | A | |
SIMP_SREL_EQUAL_EMPTY |
A | |||
SIMP_STREL_EQUAL_EMPTY |
A | |||
SIMP_DOM_EQUAL_EMPTY |
A | |||
SIMP_RAN_EQUAL_EMPTY |
A | |||
SIMP_FCOMP_EQUAL_EMPTY |
A | |||
SIMP_BCOMP_EQUAL_EMPTY |
A | |||
SIMP_DOMRES_EQUAL_EMPTY |
A | |||
SIMP_DOMSUB_EQUAL_EMPTY |
A | |||
SIMP_RANRES_EQUAL_EMPTY |
A | |||
SIMP_RANSUB_EQUAL_EMPTY |
A | |||
SIMP_CONVERSE_EQUAL_EMPTY |
A | |||
SIMP_RELIMAGE_EQUAL_EMPTY |
A | |||
SIMP_OVERL_EQUAL_EMPTY |
A | |||
SIMP_DPROD_EQUAL_EMPTY |
A | |||
SIMP_PPROD_EQUAL_EMPTY |
A | |||
SIMP_ID_EQUAL_EMPTY |
A | |||
SIMP_PRJ1_EQUAL_EMPTY |
A | |||
SIMP_PRJ2_EQUAL_EMPTY |
A |