Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Billaude No edit summary |
imported>Billaude Add inference rules used in MapOvrGoal, MembershipGoal (so far), GeneralizedModusPonens and the AutoRewriterL3. |
||
Line 216: | Line 216: | ||
{{RRRow}}|*||{{Rulename|ONE_POINT_R}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H} \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> || A | {{RRRow}}|*||{{Rulename|ONE_POINT_R}}||<math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} \;\;\vdash \;\; \forall x, \ldots, \ldots,z \qdot [y \bcmeq E]\textbf{P} \land \ldots \land \ldots \land [y \bcmeq E]\textbf{Q} \limp [y \bcmeq E]\textbf{R} }{ \textbf{H} \;\;\vdash\;\; \forall x, \ldots, y, \ldots, z \qdot \textbf{P} \land \ldots \land y = E \land \ldots \land \textbf{Q} \limp \textbf{R} }</math>|| The rule can be applied with <math>\forall</math> as well as with <math>\exists</math> || A | ||
{{RRRow}}|*||{{Rulename|SIM_OV_REL}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash x\in A}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto\right\}\in A\rel B} </math> || where <math>\mathit{op}</math> is one of <math>\rel</math>, <math>\trel</math>, <math>\srel</math>, <math>\strel</math>, <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A | |||
{{RRRow}}|*||{{Rulename|SIM_OV_TREL}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash x\in A}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto\right\}\in A\trel B} </math> || where <math>\mathit{op}</math> is one of <math>\trel</math>, <math>\strel</math>, <math>\tfun</math>,<math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A | |||
{{RRRow}}|*||{{Rulename|SIM_OV_PFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash x\in A}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto\right\}\in A\pfun B} </math> || where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A | |||
{{RRRow}}|*||{{Rulename|SIM_OV_TFUN}}|| <math> \frac{\textbf{H}\vdash x\in A\qquad \textbf{H}\vdash x\in A}{\textbf{H}, f\in A\;op\; B\vdash f\ovl\left\{x\mapsto\right\}\in A\tfun B} </math> || where <math>\mathit{op}</math> is one of <math>\tfun</math>, <math>\tinj</math>, <math>\tsur</math>, <math>\tbij</math> || A | |||
|} | |||
Those following rules have been implemented in the reasoner GeneralizedModusPonens. | |||
{{RRHeader}} | |||
{{RRRow}}|*||{{Rulename|GENMP_HYP_HYP}}|| <math> \frac{P,\varphi(\btrue) \vdash G}{P,\varphi(P) \vdash G} </math> || || A | |||
{{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_HYP}}|| <math> \frac{\lnot P,\varphi(\bfalse) \vdash G}{\lnot P,\varphi(P) \vdash G} </math> || || A | |||
{{RRRow}}|*||{{Rulename|GENMP_HYP_GOAL}}|| <math> \frac{P \vdash \varphi(\btrue)}{P \vdash \varphi(P)} </math> || || A | |||
{{RRRow}}|*||{{Rulename|GENMP_NOT_HYP_GOAL}}|| <math> \frac{\lnot P \vdash \varphi(\bfalse)}{\lnot P \vdash \varphi(P)} </math> || || A | |||
{{RRRow}}|*||{{Rulename|GENMP_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash G}{H,\varphi(G)\vdash G} </math> || || A | |||
{{RRRow}}|*||{{Rulename|GENMP_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash\neg G}{H,\varphi(G)\vdash\neg G} </math> || || A | |||
{{RRRow}}|*||{{Rulename|GENMP_OR_GOAL_HYP}}|| <math> \frac{H,\varphi(\bfalse)\vdash G_1\lor\cdots\lor G_i\lor\cdots\lor G_n}{H,\varphi(G_i)\vdash G_1\lor\cdots\lor G_i\lor\cdots\lor G_n} </math> || || A | |||
{{RRRow}}|*||{{Rulename|GENMP_OR_NOT_GOAL_HYP}}|| <math> \frac{H,\varphi(\btrue)\vdash G_1\lor\cdots\lor\neg G_i\lor\cdots\lor G_n}{H,\varphi(G_i)\vdash G_1\lor\cdots\lor\neg G_i\lor\cdots\lor G_n} </math> || || A | |||
|} | |||
Thos following rules have been implemented in the MembershipGoal reasoner. | |||
{{RRHeader}} | |||
{{RRRow}}|*||{{Rulename|SUBSET_SUBSETEQ}}|| <math> A\subset B\vdash A\subseteq B </math> || || A | |||
{{RRRow}}|*||{{Rulename|DOM_SUBSET}}|| <math> A\subseteq B\vdash \dom(A)\subseteq\dom(B)</math> || || A | |||
{{RRRow}}|*||{{Rulename|RAN_SUBSET}}|| <math> A\subseteq B\vdash \ran(A)\subseteq\ran(B)</math> || || A | |||
{{RRRow}}|*||{{Rulename|EQUAL_SUBSET_LR}}|| <math> A=B\vdash A\subseteq B</math> || || A | |||
{{RRRow}}|*||{{Rulename|EQUAL_SUBSET_RL}}|| <math> A=B\vdash B\subseteq A</math> || || A | |||
{{RRRow}}|*||{{Rulename|IN_DOM_CPROD}}|| <math> x\in\dom(A\cprod B)\vdash x\in A</math> || || A | |||
{{RRRow}}|*||{{Rulename|IN_RAN_CPROD}}|| <math> y\in\ran(A\cprod B)\vdash y\in B</math> || || A | |||
{{RRRow}}|*||{{Rulename|IN_DOM_REL}}|| <math> x\mapsto y\in f\vdash x\in\dom(f)</math> || || A | |||
{{RRRow}}|*||{{Rulename|IN_RAN_REL}}|| <math> x\mapsto y\in f\vdash y\in\ran(f)</math> || || A | |||
{{RRRow}}|*||{{Rulename|SETENUM_SUBSET}}|| <math> \left\{a,\cdots,x,\cdots, z\right\}\subseteq A\vdash x\in A</math> || || A | |||
{{RRRow}}|*||{{Rulename|OVR_RIGHT_SUBSET}}|| <math> f\ovl\cdots\ovl g\ovl\cdots\ovl h\subseteq A\vdash g\ovl\cdots\ovl h\subseteq A</math> || || A | |||
{{RRRow}}|*||{{Rulename|RELSET_SUBSET_CPROD}}|| <math> f\in A\;op\;B\vdash f\subseteq A\cprod B</math> || where <math>\mathit{op}</math> is one of <math>\rel</math>, <math>\trel</math>, <math>\srel</math>, <math>\strel</math>, <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A | |||
|} | |} |
Revision as of 16:34, 28 September 2011
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
A
| ||
* | HYP_OR |
A
| ||
* | CNTR |
A
| ||
* | FALSE_HYP |
A
| ||
* | TRUE_GOAL |
A
| ||
* | FUN_GOAL |
where and denote types and is one of , , , , , , . | A
| |
* | FUN_IMAGE_GOAL |
where denotes a set of relations (any arrow) and is WD strict | M
| |
FUN_GOAL_REC |
where and denote types, denotes a set of relations (any arrow) and is one of , , , , , , . | A
| ||
* | DBL_HYP |
A
| ||
* | AND_L |
A
| ||
* | AND_R |
A
| ||
IMP_L1 |
A
| |||
* | IMP_R |
A
| ||
* | IMP_AND_L |
A
| ||
* | IMP_OR_L |
A
| ||
* | AUTO_MH |
A
| ||
* | NEG_IN_L |
A
| ||
* | NEG_IN_R |
A
| ||
* | XST_L |
A
| ||
* | ALL_R |
A
| ||
* | EQL_LR |
is a variable which is not free in | A
| |
* | EQL_RL |
is a variable which is not free in | A
| |
SUBSET_INTER |
where and are not bound by | A
| ||
IN_INTER |
where and are not bound by | A
| ||
NOTIN_INTER |
where and are not bound by | A
| ||
* | FIN_L_LOWER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_LOWER_BOUND_R |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_R |
The goal is discharged | A
| |
* | CONTRADICT_L |
M
| ||
* | CONTRADICT_R |
M
| ||
* | CASE |
M
| ||
* | IMP_CASE |
M
| ||
* | MH |
M
| ||
* | HM |
M
| ||
EQV |
M
| |||
* | OV_SETENUM_L |
where is WD strict | A
| |
* | OV_SETENUM_R |
where is WD strict | A
| |
* | OV_L |
where is WD strict | A
| |
* | OV_R |
where is WD strict | A
| |
* | DIS_BINTER_R |
where and denote types. | M
| |
* | DIS_BINTER_L |
where and denote types. | M
| |
* | DIS_SETMINUS_R |
where and denote types. | M
| |
* | DIS_SETMINUS_L |
where and denote types. | M
| |
* | SIM_REL_IMAGE_R |
M
| ||
* | SIM_REL_IMAGE_L |
M
| ||
* | SIM_FCOMP_R |
M
| ||
* | SIM_FCOMP_L |
M
| ||
* | FIN_SUBSETEQ_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_BINTER_R |
M
| ||
FIN_KINTER_R |
where is fresh | M
| ||
FIN_QINTER_R |
M
| |||
* | FIN_SETMINUS_R |
M
| ||
FIN_REL |
where denotes a set of relations (any arrow) | A
| ||
* | FIN_REL_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_IMG_R |
M
| ||
* | FIN_REL_RAN_R |
M
| ||
* | FIN_REL_DOM_R |
M
| ||
FIN_FUN_DOM |
where is one of , , , , , , | A
| ||
FIN_FUN_RAN |
where is one of , , | A
| ||
* | FIN_FUN1_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN2_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_IMG_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_RAN_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_DOM_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | LOWER_BOUND_L |
must not contain any bound variable | M
| |
* | LOWER_BOUND_R |
must not contain any bound variable | M
| |
* | UPPER_BOUND_L |
must not contain any bound variable | M
| |
* | UPPER_BOUND_R |
must not contain any bound variable | M
| |
* | FIN_LT_0 |
M
| ||
* | FIN_GE_0 |
M
| ||
CARD_INTERV |
where is WD strict | M
| ||
CARD_EMPTY_INTERV |
where is WD strict | M
| ||
* | DERIV_LE_CARD |
and bear the same type | M
| |
* | DERIV_GE_CARD |
and bear the same type | M
| |
* | DERIV_LT_CARD |
and bear the same type | M
| |
* | DERIV_GT_CARD |
and bear the same type | M
| |
* | DERIV_EQUAL_CARD |
and bear the same type | M
| |
SIMP_CARD_SETMINUS_L |
M | |||
SIMP_CARD_SETMINUS_R |
M
| |||
SIMP_CARD_CPROD_L |
M | |||
SIMP_CARD_CPROD_R |
M
| |||
* | FORALL_INST |
is instantiated with | M
| |
* | FORALL_INST_MP |
is instantiated with and a Modus Ponens is applied | M
| |
* | FORALL_INST_MT |
is instantiated with and a Modus Tollens is applied | M
| |
* | CUT |
hypothesis is added | M
| |
* | EXISTS_INST |
is instantiated with | M
| |
* | DISTINCT_CASE |
case distinction on predicate | M
| |
* | ONE_POINT_L |
The rule can be applied with as well as with | A
| |
* | ONE_POINT_R |
The rule can be applied with as well as with | A
| |
* | SIM_OV_REL |
where is one of , , , , , , , , , , | A
| |
* | SIM_OV_TREL |
where is one of , , ,, , | A
| |
* | SIM_OV_PFUN |
where is one of , , , , , , | A
| |
* | SIM_OV_TFUN |
where is one of , , , | A |
Those following rules have been implemented in the reasoner GeneralizedModusPonens.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | GENMP_HYP_HYP |
A | ||
* | GENMP_NOT_HYP_HYP |
A | ||
* | GENMP_HYP_GOAL |
A | ||
* | GENMP_NOT_HYP_GOAL |
A | ||
* | GENMP_GOAL_HYP |
A | ||
* | GENMP_NOT_GOAL_HYP |
A | ||
* | GENMP_OR_GOAL_HYP |
A | ||
* | GENMP_OR_NOT_GOAL_HYP |
A |
Thos following rules have been implemented in the MembershipGoal reasoner.
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | SUBSET_SUBSETEQ |
A | ||
* | DOM_SUBSET |
A | ||
* | RAN_SUBSET |
A | ||
* | EQUAL_SUBSET_LR |
A | ||
* | EQUAL_SUBSET_RL |
A | ||
* | IN_DOM_CPROD |
A | ||
* | IN_RAN_CPROD |
A | ||
* | IN_DOM_REL |
A | ||
* | IN_RAN_REL |
A | ||
* | SETENUM_SUBSET |
A | ||
* | OVR_RIGHT_SUBSET |
A | ||
* | RELSET_SUBSET_CPROD |
where is one of , , , , , , , , , , | A |
See also Extension Proof Rules#Inference Rules.