Empty Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Initial version without any rule |
imported>Josselin Added rules EQUAL_EMPTY |
||
Line 4: | Line 4: | ||
{{RRHeader}} | {{RRHeader}} | ||
{{RRRow}}|*||{{Rulename|DEF_SPECIAL_NOT_EQUAL}}||<math> \lnot\, S = \emptyset \;\;\defi\;\; \exists x \qdot x \in S </math>|| where <math>x</math> is not free in <math>S</math> || M | |||
{{RRRow}}|||{{Rulename|SIMP_SETENUM_EQUAL_EMPTY}}||<math> \{ A, \ldots , B\} = \emptyset \;\;\defi\;\; \bfalse </math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_COMPSET}}||<math> \{ x \qdot P(x) \mid E \} = \emptyset \;\;\defi\;\; \forall x\qdot \lnot\, P(x) </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_BINTER_EQUAL_EMPTY}}||<math> A \binter B = \emptyset \;\;\defi\;\; \forall y\qdot y \in A \limp \lnot\, y \in B </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_BUNION_EQUAL_EMPTY}}||<math> A \bunion \ldots \bunion B = \emptyset \;\;\defi\;\; A = \emptyset \land \ldots \land B = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_SETMINUS_EQUAL_EMPTY}}||<math> A \setminus B = \emptyset \;\;\defi\;\; A \subseteq B </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_POW_EQUAL_EMPTY}}||<math> \pow (S) = \emptyset \;\;\defi\;\; \bfalse </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_POW1_EQUAL_EMPTY}}||<math> \pown (S) = \emptyset \;\;\defi\;\; S = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_KUNION_EQUAL_EMPTY}}||<math> \union (S) = \emptyset \;\;\defi\;\; S \subseteq \{ \emptyset \} </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_QUNION_EQUAL_EMPTY}}||<math> (\Union x\qdot P(x) \mid T(x)) = \emptyset \;\;\defi\;\; \forall s\qdot P(s) \limp T(s) = \emptyset</math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_BOOL_EQUAL_EMPTY}}||<math> \Bool = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_INT_EQUAL_EMPTY}}||<math> \intg = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_NATURAL_EQUAL_EMPTY}}||<math> \nat = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_NATURAL1_EQUAL_EMPTY}}||<math> \natn = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | |||
{{RRRow}}|*||{{Rulename|SIMP_TYPE_EQUAL_EMPTY}}||<math> \mathit{Ty} = \emptyset \;\;\defi\;\; \bfalse </math>|| where <math>\mathit{Ty}</math> is a type expression || A | |||
{{RRRow}}|||{{Rulename|SIMP_CPROD_EQUAL_EMPTY}}||<math> S \cprod T \;\;\defi\;\; S = \emptyset \lor T = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_UPTO_EQUAL_EMPTY}}||<math> i \upto j \;\;\defi\;\; i > j </math>|| where <math>i</math> and <math>j</math> are literals || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_REL}}||<math> A \rel B = \emptyset \;\;\defi\;\; \bfalse </math>|| idem for operators <math>\pfun \pinj</math> || A | |||
{{RRRow}}|*||{{Rulename|SIMP_SPECIAL_EQUAL_RELDOM}}||<math> A \trel B = \emptyset \;\;\defi\;\; \lnot\, A = \emptyset \land B = \emptyset </math>|| idem for operator <math>\tfun</math> || A | |||
{{RRRow}}|||{{Rulename|SIMP_SREL_EQUAL_EMPTY}}||<math> A \rel B \;\;\defi\;\; A = \emptyset \land \lnot\,B = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_STREL_EQUAL_EMPTY}}||<math> A \strel B \;\;\defi\;\; (A = \emptyset \;\;\defi\;\; \lnot\,B = \emptyset) </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_DOM_EQUAL_EMPTY}}||<math> \dom (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_RAN_EQUAL_EMPTY}}||<math> \ran (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_FCOMP_EQUAL_EMPTY}}||<math> p \fcomp q = \emptyset \;\;\defi\;\; \ran (p) \binter \dom (q) = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_BCOMP_EQUAL_EMPTY}}||<math> p \bcomp q = \emptyset \;\;\defi\;\; \ran (p) \binter \dom (q) = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_DOMRES_EQUAL_EMPTY}}||<math> S \domres r = \emptyset \;\;\defi\;\; \dom (r) \binter S = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_DOMSUB_EQUAL_EMPTY}}||<math> S \domsub r = \emptyset \;\;\defi\;\; \dom (r) \subseteq S </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_RANRES_EQUAL_EMPTY}}||<math> r \ranres S = \emptyset \;\;\defi\;\; \ran (r) \binter S = \emptyset</math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_RANSUB_EQUAL_EMPTY}}||<math> r \ransub S = \emptyset \;\;\defi\;\; \ran (r) \subseteq S </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_CONVERSE_EQUAL_EMPTY}}||<math> r^{-1} = \emptyset \;\;\defi\;\; r = \emptyset</math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_RELIMAGE_EQUAL_EMPTY}}||<math> r[S] = \emptyset \;\;\defi\;\; S \domres r = \emptyset</math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_OVERL_EQUAL_EMPTY}}||<math> r \ovl \ldots \ovl s = \emptyset \;\;\defi\;\; r = \emptyset \land \ldots \land s = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_DPROD_EQUAL_EMPTY}}||<math> p \dprod q = \emptyset \;\;\defi\;\; \dom (p) \binter \dom (q) = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_PPROD_EQUAL_EMPTY}}||<math> p \pprod q = \emptyset \;\;\defi\;\; p = \emptyset \lor q = \emptyset </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_ID_EQUAL_EMPTY}}||<math> \id = \emptyset \;\;\defi\;\; \bfalse </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_PRJ1_EQUAL_EMPTY}}||<math> \prjone = \emptyset \;\;\defi\;\; \bfalse </math>|| || A | |||
{{RRRow}}|||{{Rulename|SIMP_PRJ2_EQUAL_EMPTY}}||<math> \prjtwo = \emptyset \;\;\defi\;\; \bfalse </math>|| || A | |||
|} | |} | ||
Revision as of 13:14, 29 April 2013
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | DEF_SPECIAL_NOT_EQUAL |
where is not free in | M | |
SIMP_SETENUM_EQUAL_EMPTY |
A | |||
* | SIMP_SPECIAL_EQUAL_COMPSET |
A | ||
SIMP_BINTER_EQUAL_EMPTY |
A | |||
SIMP_BUNION_EQUAL_EMPTY |
A | |||
SIMP_SETMINUS_EQUAL_EMPTY |
A | |||
SIMP_POW_EQUAL_EMPTY |
A | |||
SIMP_POW1_EQUAL_EMPTY |
A | |||
SIMP_KUNION_EQUAL_EMPTY |
A | |||
SIMP_QUNION_EQUAL_EMPTY |
A | |||
SIMP_BOOL_EQUAL_EMPTY |
A | |||
SIMP_INT_EQUAL_EMPTY |
A | |||
SIMP_NATURAL_EQUAL_EMPTY |
A | |||
SIMP_NATURAL1_EQUAL_EMPTY |
A | |||
* | SIMP_TYPE_EQUAL_EMPTY |
where is a type expression | A | |
SIMP_CPROD_EQUAL_EMPTY |
A | |||
SIMP_UPTO_EQUAL_EMPTY |
where and are literals | A | ||
* | SIMP_SPECIAL_EQUAL_REL |
idem for operators | A | |
* | SIMP_SPECIAL_EQUAL_RELDOM |
idem for operator | A | |
SIMP_SREL_EQUAL_EMPTY |
A | |||
SIMP_STREL_EQUAL_EMPTY |
A | |||
SIMP_DOM_EQUAL_EMPTY |
A | |||
SIMP_RAN_EQUAL_EMPTY |
A | |||
SIMP_FCOMP_EQUAL_EMPTY |
A | |||
SIMP_BCOMP_EQUAL_EMPTY |
A | |||
SIMP_DOMRES_EQUAL_EMPTY |
A | |||
SIMP_DOMSUB_EQUAL_EMPTY |
A | |||
SIMP_RANRES_EQUAL_EMPTY |
A | |||
SIMP_RANSUB_EQUAL_EMPTY |
A | |||
SIMP_CONVERSE_EQUAL_EMPTY |
A | |||
SIMP_RELIMAGE_EQUAL_EMPTY |
A | |||
SIMP_OVERL_EQUAL_EMPTY |
A | |||
SIMP_DPROD_EQUAL_EMPTY |
A | |||
SIMP_PPROD_EQUAL_EMPTY |
A | |||
SIMP_ID_EQUAL_EMPTY |
A | |||
SIMP_PRJ1_EQUAL_EMPTY |
A | |||
SIMP_PRJ2_EQUAL_EMPTY |
A |