Empty Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Josselin Removed rule SIMP_BINTER_EQUAL_EMPTY and fixed rule SIMP_QUNION_EQUAL_EMPTY |
imported>Josselin Removed SIMP_BOOL_EQUAL_EMPTY and SIMP_INT_EQUAL_EMPTY which are subsumed by SIMP_TYPE_EQUAL_EMPTY |
||
Line 13: | Line 13: | ||
{{RRRow}}|||{{Rulename|SIMP_KUNION_EQUAL_EMPTY}}||<math> \union (S) = \emptyset \;\;\defi\;\; S \subseteq \{ \emptyset \} </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_KUNION_EQUAL_EMPTY}}||<math> \union (S) = \emptyset \;\;\defi\;\; S \subseteq \{ \emptyset \} </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_QUNION_EQUAL_EMPTY}}||<math> (\Union x\qdot P(x) \mid E(x)) = \emptyset \;\;\defi\;\; \forall x\qdot P(x) \limp E(x) = \emptyset</math>|| || A | {{RRRow}}|||{{Rulename|SIMP_QUNION_EQUAL_EMPTY}}||<math> (\Union x\qdot P(x) \mid E(x)) = \emptyset \;\;\defi\;\; \forall x\qdot P(x) \limp E(x) = \emptyset</math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_NATURAL_EQUAL_EMPTY}}||<math> \nat = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | {{RRRow}}|||{{Rulename|SIMP_NATURAL_EQUAL_EMPTY}}||<math> \nat = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_NATURAL1_EQUAL_EMPTY}}||<math> \natn = \emptyset \;\;\defi\;\; \bfalse</math>|| || A | {{RRRow}}|||{{Rulename|SIMP_NATURAL1_EQUAL_EMPTY}}||<math> \natn = \emptyset \;\;\defi\;\; \bfalse</math>|| || A |
Revision as of 07:43, 30 April 2013
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | DEF_SPECIAL_NOT_EQUAL |
where is not free in | M | |
SIMP_SETENUM_EQUAL_EMPTY |
A | |||
* | SIMP_SPECIAL_EQUAL_COMPSET |
A | ||
SIMP_BUNION_EQUAL_EMPTY |
A | |||
SIMP_SETMINUS_EQUAL_EMPTY |
A | |||
SIMP_POW_EQUAL_EMPTY |
A | |||
SIMP_POW1_EQUAL_EMPTY |
A | |||
SIMP_KUNION_EQUAL_EMPTY |
A | |||
SIMP_QUNION_EQUAL_EMPTY |
A | |||
SIMP_NATURAL_EQUAL_EMPTY |
A | |||
SIMP_NATURAL1_EQUAL_EMPTY |
A | |||
* | SIMP_TYPE_EQUAL_EMPTY |
where is a type expression | A | |
SIMP_CPROD_EQUAL_EMPTY |
A | |||
SIMP_UPTO_EQUAL_EMPTY |
where and are literals | A | ||
* | SIMP_SPECIAL_EQUAL_REL |
idem for operators | A | |
* | SIMP_SPECIAL_EQUAL_RELDOM |
idem for operator | A | |
SIMP_SREL_EQUAL_EMPTY |
A | |||
SIMP_STREL_EQUAL_EMPTY |
A | |||
SIMP_DOM_EQUAL_EMPTY |
A | |||
SIMP_RAN_EQUAL_EMPTY |
A | |||
SIMP_FCOMP_EQUAL_EMPTY |
A | |||
SIMP_BCOMP_EQUAL_EMPTY |
A | |||
SIMP_DOMRES_EQUAL_EMPTY |
A | |||
SIMP_DOMSUB_EQUAL_EMPTY |
A | |||
SIMP_RANRES_EQUAL_EMPTY |
A | |||
SIMP_RANSUB_EQUAL_EMPTY |
A | |||
SIMP_CONVERSE_EQUAL_EMPTY |
A | |||
SIMP_RELIMAGE_EQUAL_EMPTY |
A | |||
SIMP_OVERL_EQUAL_EMPTY |
A | |||
SIMP_DPROD_EQUAL_EMPTY |
A | |||
SIMP_PPROD_EQUAL_EMPTY |
A | |||
SIMP_ID_EQUAL_EMPTY |
A | |||
SIMP_PRJ1_EQUAL_EMPTY |
A | |||
SIMP_PRJ2_EQUAL_EMPTY |
A |