Empty Set Rewrite Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Josselin Fixed rule SIMP_SREL_EQUAL_EMPTY |
imported>Josselin Fixed rule SIMP_BCOMP_EQUAL_EMPTY |
||
Line 25: | Line 25: | ||
{{RRRow}}|||{{Rulename|SIMP_RAN_EQUAL_EMPTY}}||<math> \ran (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_RAN_EQUAL_EMPTY}}||<math> \ran (r) = \emptyset \;\;\defi\;\; r = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_FCOMP_EQUAL_EMPTY}}||<math> p \fcomp q = \emptyset \;\;\defi\;\; \ran (p) \binter \dom (q) = \emptyset </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_FCOMP_EQUAL_EMPTY}}||<math> p \fcomp q = \emptyset \;\;\defi\;\; \ran (p) \binter \dom (q) = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_BCOMP_EQUAL_EMPTY}}||<math> p \bcomp q = \emptyset \;\;\defi\;\; \ran ( | {{RRRow}}|||{{Rulename|SIMP_BCOMP_EQUAL_EMPTY}}||<math> p \bcomp q = \emptyset \;\;\defi\;\; \ran (q) \binter \dom (p) = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_DOMRES_EQUAL_EMPTY}}||<math> S \domres r = \emptyset \;\;\defi\;\; \dom (r) \binter S = \emptyset </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_DOMRES_EQUAL_EMPTY}}||<math> S \domres r = \emptyset \;\;\defi\;\; \dom (r) \binter S = \emptyset </math>|| || A | ||
{{RRRow}}|||{{Rulename|SIMP_DOMSUB_EQUAL_EMPTY}}||<math> S \domsub r = \emptyset \;\;\defi\;\; \dom (r) \subseteq S </math>|| || A | {{RRRow}}|||{{Rulename|SIMP_DOMSUB_EQUAL_EMPTY}}||<math> S \domsub r = \emptyset \;\;\defi\;\; \dom (r) \subseteq S </math>|| || A |
Revision as of 08:07, 30 April 2013
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Rewrite_Rules.
Name | Rule | Side Condition | A/M | |
---|---|---|---|---|
* | DEF_SPECIAL_NOT_EQUAL |
where is not free in | M | |
SIMP_SETENUM_EQUAL_EMPTY |
A | |||
* | SIMP_SPECIAL_EQUAL_COMPSET |
A | ||
SIMP_BUNION_EQUAL_EMPTY |
A | |||
SIMP_SETMINUS_EQUAL_EMPTY |
A | |||
SIMP_POW_EQUAL_EMPTY |
A | |||
SIMP_POW1_EQUAL_EMPTY |
A | |||
SIMP_KUNION_EQUAL_EMPTY |
A | |||
SIMP_QUNION_EQUAL_EMPTY |
A | |||
SIMP_NATURAL_EQUAL_EMPTY |
A | |||
SIMP_NATURAL1_EQUAL_EMPTY |
A | |||
* | SIMP_TYPE_EQUAL_EMPTY |
where is a type expression | A | |
SIMP_CPROD_EQUAL_EMPTY |
A | |||
SIMP_UPTO_EQUAL_EMPTY |
A | |||
* | SIMP_SPECIAL_EQUAL_REL |
idem for operators | A | |
* | SIMP_SPECIAL_EQUAL_RELDOM |
idem for operator | A | |
SIMP_SREL_EQUAL_EMPTY |
A | |||
SIMP_STREL_EQUAL_EMPTY |
A | |||
SIMP_DOM_EQUAL_EMPTY |
A | |||
SIMP_RAN_EQUAL_EMPTY |
A | |||
SIMP_FCOMP_EQUAL_EMPTY |
A | |||
SIMP_BCOMP_EQUAL_EMPTY |
A | |||
SIMP_DOMRES_EQUAL_EMPTY |
A | |||
SIMP_DOMSUB_EQUAL_EMPTY |
A | |||
SIMP_RANRES_EQUAL_EMPTY |
A | |||
SIMP_RANSUB_EQUAL_EMPTY |
A | |||
SIMP_CONVERSE_EQUAL_EMPTY |
A | |||
SIMP_RELIMAGE_EQUAL_EMPTY |
A | |||
SIMP_OVERL_EQUAL_EMPTY |
A | |||
SIMP_DPROD_EQUAL_EMPTY |
A | |||
SIMP_PPROD_EQUAL_EMPTY |
A | |||
SIMP_ID_EQUAL_EMPTY |
A | |||
SIMP_PRJ1_EQUAL_EMPTY |
A | |||
SIMP_PRJ2_EQUAL_EMPTY |
A |