Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Nicolas m moved datatype rules to extension proof rules page |
imported>Laurent Replaced "top-level" with WD strictness or freeness condition. |
||
Line 22: | Line 22: | ||
{{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | {{RRRow}}|*||{{Rulename|FUN_GOAL}}|| <math>\frac{}{\textbf{H},\; f\in E\;\mathit{op}\;F \;\;\vdash\;\; f\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types and <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | ||
{{RRRow}}| ||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math> | {{RRRow}}| ||{{Rulename|FUN_IMAGE_GOAL}}|| <math>\frac{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2,\; f(E)\in S_2\;\;\vdash\;\; \mathbf{P}(f(E))}{\textbf{H},\; f\in S_1\;\mathit{op}\;S_2\;\;\vdash\;\; \mathbf{P}(f(E))}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathbf{P}</math> is WD strict || M | ||
{{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | {{RRRow}}| ||{{Rulename|FUN_GOAL_REC}}|| <math>\frac{}{\textbf{H},\; f\in S_1\;\mathit{op_1}\;(S_2\;\mathit{op_2}\;(\ldots(S_n\;\mathit{op_n}(U\;\mathit{opf}\;V\;))\ldots)) \;\vdash\;\; f(E_1)(E_2)...(E_n)\in T_1\pfun T_2}</math> || where <math>T_1</math> and <math>T_2</math> denote types, <math>\mathit{op}</math> denotes a set of relations (any arrow) and <math>\mathit{opf}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math>. || A | ||
Line 63: | Line 63: | ||
\textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})} | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{V})} | ||
{\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\; | {\textbf{H},\;\textbf{T} \subseteq \textbf{U} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> || | \textbf{G}(\textbf{S} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U} \binter \dots \binter \textbf{V})}</math> || where <math>\mathbf{T}</math> and <math>\mathbf{U}</math> are not bound by <math>\mathbf{G}</math> || A | ||
{{RRRow}}| ||{{Rulename|IN_INTER}}|| <math>\frac{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | {{RRRow}}| ||{{Rulename|IN_INTER}}|| <math>\frac{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})} | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{U})} | ||
{\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | {\textbf{H},\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || where <math>\mathbf{E}</math> and <math>\mathbf{T}</math> are not bound by <math>\mathbf{G}</math> || A | ||
{{RRRow}}| ||{{Rulename|NOTIN_INTER}}|| <math>\frac{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | {{RRRow}}| ||{{Rulename|NOTIN_INTER}}|| <math>\frac{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\emptyset)} | \textbf{G}(\emptyset)} | ||
{\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | {\textbf{H},\;\lnot\;\textbf{E} \in \textbf{T} \;\;\vdash \;\; | ||
\textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || | \textbf{G}(\textbf{S} \binter \dots \binter \{\textbf{E}\} \binter \dots \binter \textbf{T} \binter \dots \binter \textbf{U})}</math> || where <math>\mathbf{E}</math> and <math>\mathbf{T}</math> are not bound by <math>\mathbf{G}</math> || A | ||
{{RRRow}}|*||{{Rulename|FIN_L_LOWER_BOUND_L}}|| <math>\frac{}{\textbf{H},\;\finite(S) \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || The goal is discharged || A | {{RRRow}}|*||{{Rulename|FIN_L_LOWER_BOUND_L}}|| <math>\frac{}{\textbf{H},\;\finite(S) \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; n \leq x)}</math> || The goal is discharged || A | ||
Line 100: | Line 100: | ||
,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E) | ,\;\textbf{P}(F)\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,(G=E) | ||
,\;\textbf{P}((\{E\}) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E | ,\;\textbf{P}((\{E\}) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl\{E | ||
\mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> || | \mapsto F\})(G)) \;\;\vdash \;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || A | ||
{{RRRow}}|*||{{Rulename|OV_SETENUM_R}}|| <math>\frac{\textbf{H},\; G=E \;\;\vdash\;\;\textbf{Q}(F) | {{RRRow}}|*||{{Rulename|OV_SETENUM_R}}|| <math>\frac{\textbf{H},\; G=E \;\;\vdash\;\;\textbf{Q}(F) | ||
\qquad \textbf{H},\; \neg\,(G=E) \;\;\vdash\;\;\textbf{Q}((\{E\}) \domsub f)(G))}{\textbf{H} | \qquad \textbf{H},\; \neg\,(G=E) \;\;\vdash\;\;\textbf{Q}((\{E\}) \domsub f)(G))}{\textbf{H} | ||
\;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G))}</math> || | \;\;\vdash \;\; \textbf{Q}((f\ovl\{E \mapsto F\})(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A | ||
{{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G \in \dom(g) ,\;\textbf{P}(g(G))\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,G \in \dom(g) ,\;\textbf{P}((\dom(g) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl g)(G)) \;\;\vdash \;\; \textbf{Q}}</math> || | {{RRRow}}|*||{{Rulename|OV_L}}|| <math>\frac{\textbf{H},\; G \in \dom(g) ,\;\textbf{P}(g(G))\;\;\vdash\;\;\textbf{Q} \qquad \textbf{H},\; \neg\,G \in \dom(g) ,\;\textbf{P}((\dom(g) \domsub f)(G))\;\;\vdash\;\;\textbf{Q}}{\textbf{H},\;\textbf{P}((f\ovl g)(G)) \;\;\vdash \;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || A | ||
{{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> || | {{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A | ||
{{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> || | {{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> || | {{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> || | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> || | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>\mathbf{Q}</math> is WD strict, <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])} </math> || | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])} </math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
{{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_L}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} } </math> || | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_L}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H},\; \textbf{Q}(\{ f(E)\}) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[\{ E\} ]) \;\;\vdash\;\; \textbf{G} } </math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
{{RRRow}}|*||{{Rulename|SIM_FCOMP_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(g(f(x))) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f \fcomp g)(x))}</math> || | {{RRRow}}|*||{{Rulename|SIM_FCOMP_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(g(f(x))) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f \fcomp g)(x))}</math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
{{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G}}</math> || | {{RRRow}}|*||{{Rulename|SIM_FCOMP_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(\textbf{Q}(g(f(x)))) \qquad\textbf{H},\; \textbf{Q}(g(f(x))) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}((f \fcomp g)(x)) \;\;\vdash \;\; \textbf{G}}</math> || where <math>\mathbf{Q}</math> is WD strict. || M | ||
{{RRRow}}|*||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S)}</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_SUBSETEQ_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(T) \qquad\textbf{H} \;\;\vdash \;\; S \subseteq T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(S)}</math> || the user has to write the set corresponding to <math>T</math> in the editing area of the Proof Control Window || M | ||
Line 165: | Line 165: | ||
{{RRRow}}|*||{{Rulename|FIN_GE_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n) \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \nat }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> || || M | {{RRRow}}|*||{{Rulename|FIN_GE_0}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \exists n\,\qdot\, (\forall x \,\qdot\, x \in S \;\limp\; x \leq n) \qquad \textbf{H} \;\;\vdash \;\; S \subseteq \nat }{\textbf{H} \;\;\vdash \;\; \finite(S)}</math> || || M | ||
{{RRRow}}|||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || <math>\ | {{RRRow}}|||{{Rulename|CARD_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b \;\;\vdash \;\; \textbf{Q}(b-a+1) \qquad \textbf{H},\, b < a \;\;\vdash \;\; \textbf{Q}(0) }{\textbf{H} \;\;\vdash\;\; \textbf{Q}(\card\,(a\upto b))}</math> || where <math>\mathbf{Q}</math> is WD strict || M | ||
{{RRRow}}| ||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1) \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b)) \;\;\vdash\;\; \textbf{Q}}</math> || <math>\ | {{RRRow}}| ||{{Rulename|CARD_EMPTY_INTERV}}|| <math>\frac{\textbf{H},\, a \leq b,\,\textbf{P}(b-a+1) \;\;\vdash \;\; \textbf{Q} \qquad \textbf{H},\, b < a ,\, \textbf{P}(0)\;\;\vdash \;\; \textbf{Q} }{\textbf{H},\,\textbf{P}(\card\,(a\upto b)) \;\;\vdash\;\; \textbf{Q}}</math> || where <math>\mathbf{P}</math> is WD strict || M | ||
{{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; S \subseteq T}{\textbf{H} \;\;\vdash\;\; \card(S) \leq \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | {{RRRow}}|*||{{Rulename|DERIV_LE_CARD}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; S \subseteq T}{\textbf{H} \;\;\vdash\;\; \card(S) \leq \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | ||
Line 179: | Line 179: | ||
{{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | {{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \textbf{G}} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \textbf{G}} </math>|| where <math>\mathbf{P}</math> is WD strict || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus T))} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus T))} </math>|| where <math>\mathbf{P}</math> is WD strict || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \textbf{G}} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \textbf{G}} </math>|| where <math>\mathbf{P}</math> is WD strict || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod T))} </math>|| <math>\ | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod T))} </math>|| where <math>\mathbf{P}</math> is WD strict || M | ||
{{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M |
Revision as of 14:32, 17 September 2010
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
A
| ||
* | HYP_OR |
A
| ||
* | CNTR |
A
| ||
* | FALSE_HYP |
A
| ||
* | TRUE_GOAL |
A
| ||
* | FUN_GOAL |
where and denote types and is one of , , , , , , . | A
| |
FUN_IMAGE_GOAL |
where denotes a set of relations (any arrow) and is WD strict | M
| ||
FUN_GOAL_REC |
where and denote types, denotes a set of relations (any arrow) and is one of , , , , , , . | A
| ||
* | DBL_HYP |
A
| ||
* | AND_L |
A
| ||
* | AND_R |
A
| ||
IMP_L1 |
A
| |||
* | IMP_R |
A
| ||
* | IMP_AND_L |
A
| ||
* | IMP_OR_L |
A
| ||
* | AUTO_MH |
A
| ||
* | NEG_IN_L |
A
| ||
* | NEG_IN_R |
A
| ||
* | XST_L |
A
| ||
* | ALL_R |
A
| ||
* | EQL_LR |
is a variable which is not free in | A
| |
* | EQL_RL |
is a variable which is not free in | A
| |
SUBSET_INTER |
where and are not bound by | A
| ||
IN_INTER |
where and are not bound by | A
| ||
NOTIN_INTER |
where and are not bound by | A
| ||
* | FIN_L_LOWER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_LOWER_BOUND_R |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_L |
The goal is discharged | A
| |
* | FIN_L_UPPER_BOUND_R |
The goal is discharged | A
| |
* | CONTRADICT_L |
M
| ||
* | CONTRADICT_R |
M
| ||
* | CASE |
M
| ||
* | MH |
M
| ||
* | HM |
M
| ||
EQV |
M
| |||
* | OV_SETENUM_L |
where is WD strict | A
| |
* | OV_SETENUM_R |
where is WD strict | A
| |
* | OV_L |
where is WD strict | A
| |
* | OV_R |
where is WD strict | A
| |
* | DIS_BINTER_R |
where is WD strict, and denote types. | M
| |
* | DIS_BINTER_L |
where is WD strict, and denote types. | M
| |
* | DIS_SETMINUS_R |
where is WD strict, and denote types. | M
| |
* | DIS_SETMINUS_L |
where is WD strict, and denote types. | M
| |
* | SIM_REL_IMAGE_R |
where is WD strict. | M
| |
* | SIM_REL_IMAGE_L |
where is WD strict. | M
| |
* | SIM_FCOMP_R |
where is WD strict. | M
| |
* | SIM_FCOMP_L |
where is WD strict. | M
| |
* | FIN_SUBSETEQ_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_BINTER_R |
M
| ||
* | FIN_SETMINUS_R |
M
| ||
* | FIN_REL_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_REL_IMG_R |
M
| ||
* | FIN_REL_RAN_R |
M
| ||
* | FIN_REL_DOM_R |
M
| ||
* | FIN_FUN1_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN2_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_IMG_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_RAN_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | FIN_FUN_DOM_R |
the user has to write the set corresponding to in the editing area of the Proof Control Window | M
| |
* | LOWER_BOUND_L |
must not contain any bound variable | M
| |
* | LOWER_BOUND_R |
must not contain any bound variable | M
| |
* | UPPER_BOUND_L |
must not contain any bound variable | M
| |
* | UPPER_BOUND_R |
must not contain any bound variable | M
| |
* | FIN_LT_0 |
M
| ||
* | FIN_GE_0 |
M
| ||
CARD_INTERV |
where is WD strict | M
| ||
CARD_EMPTY_INTERV |
where is WD strict | M
| ||
* | DERIV_LE_CARD |
and bear the same type | M
| |
* | DERIV_GE_CARD |
and bear the same type | M
| |
* | DERIV_LT_CARD |
and bear the same type | M
| |
* | DERIV_GT_CARD |
and bear the same type | M
| |
* | DERIV_EQUAL_CARD |
and bear the same type | M
| |
SIMP_CARD_SETMINUS_L |
where is WD strict | M | ||
SIMP_CARD_SETMINUS_R |
where is WD strict | M
| ||
SIMP_CARD_CPROD_L |
where is WD strict | M | ||
SIMP_CARD_CPROD_R |
where is WD strict | M
| ||
* | FORALL_INST |
is instantiated with | M
| |
* | FORALL_INST_MP |
is instantiated with and a Modus Ponens is applied | M
| |
* | CUT |
hypothesis is added | M
| |
* | EXISTS_INST |
is instantiated with | M
| |
* | DISTINCT_CASE |
case distinction on predicate | M
| |
ONE_POINT_L |
The rule can be applied with as well as with | A
| ||
ONE_POINT_R |
The rule can be applied with as well as with | A |
See also Extension Proof Rules#Inference Rules.