Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Laurent Added rule IMP_CASE |
imported>Laurent Added rules FIN_REL, FIN_FUN_DOM and FIN_FUN_RAN |
||
Line 144: | Line 144: | ||
{{RRRow}}|*||{{Rulename|FIN_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash | {{RRRow}}|*||{{Rulename|FIN_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash | ||
\;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T)}</math> || || M | \;\;\finite\,(S)}{\textbf{H} \;\;\vdash \;\; \finite\,(S \;\setminus\; T)}</math> || || M | ||
{{RRRow}}|*||{{Rulename|FIN_REL}}|| <math>\frac{}{\textbf{H},\; r\in S\;\mathit{op}\;T,\; \finite\,(S),\; \finite\,(T) \;\;\vdash \;\; \finite\,(r)}</math> || where <math>\mathit{op}</math> denotes a set of relations (any arrow) || A | |||
{{RRRow}}|*||{{Rulename|FIN_REL_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\rel T) \qquad\textbf{H} \;\;\vdash \;\; r \;\in\; S \rel T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(r)}</math> || the user has to write the set corresponding to <math>S \rel T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_REL_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\rel T) \qquad\textbf{H} \;\;\vdash \;\; r \;\in\; S \rel T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) \qquad \textbf{H} \;\;\vdash \;\; \finite\,(T)}{\textbf{H} \;\;\vdash \;\; \finite\,(r)}</math> || the user has to write the set corresponding to <math>S \rel T</math> in the editing area of the Proof Control Window || M | ||
Line 152: | Line 154: | ||
{{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r))}</math> || || M | {{RRRow}}|*||{{Rulename|FIN_REL_DOM_R}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; \finite\,(r) }{\textbf{H} \;\;\vdash \;\; \finite\,(\dom(r))}</math> || || M | ||
{{RRRow}}|*||{{Rulename|FIN_FUN_DOM}}|| <math>\frac{}{\textbf{H},\; f\in S\;\mathit{op}\;T,\; \finite\,(S) \;\;\vdash \;\; \finite\,(f)}</math> || where <math>\mathit{op}</math> is one of <math>\pfun</math>, <math>\tfun</math>, <math>\pinj</math>, <math>\tinj</math>, <math>\psur</math>, <math>\tsur</math>, <math>\tbij</math> || A | |||
{{RRRow}}|*||{{Rulename|FIN_FUN_RAN}}|| <math>\frac{}{\textbf{H},\; f\in S\;\mathit{op}\;T,\; \finite\,(T) \;\;\vdash \;\; \finite\,(f)}</math> || where <math>\mathit{op}</math> is one of <math>\pinj</math>, <math>\tinj</math>, <math>\tbij</math> || A | |||
{{RRRow}}|*||{{Rulename|FIN_FUN1_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f)}</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M | {{RRRow}}|*||{{Rulename|FIN_FUN1_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\;{WD}(S\pfun T) \qquad\textbf{H} \;\;\vdash \;\; f \;\in\; S \pfun T \qquad \textbf{H} \;\;\vdash \;\; \finite\,(S) }{\textbf{H} \;\;\vdash \;\; \finite\,(f)}</math> || the user has to write the set corresponding to <math>S \pfun T</math> in the editing area of the Proof Control Window || M |
Revision as of 16:44, 4 April 2011
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
![]() |
A
| |
* | HYP_OR |
![]() |
A
| |
* | CNTR |
![]() |
A
| |
* | FALSE_HYP |
![]() |
A
| |
* | TRUE_GOAL |
![]() |
A
| |
* | FUN_GOAL |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
|
* | FUN_IMAGE_GOAL |
![]() |
where ![]() ![]() |
M
|
FUN_GOAL_REC |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
| |
* | DBL_HYP |
![]() |
A
| |
* | AND_L |
![]() |
A
| |
* | AND_R |
![]() |
A
| |
IMP_L1 |
![]() |
A
| ||
* | IMP_R |
![]() |
A
| |
* | IMP_AND_L |
![]() |
A
| |
* | IMP_OR_L |
![]() |
A
| |
* | AUTO_MH |
![]() |
A
| |
* | NEG_IN_L |
![]() |
A
| |
* | NEG_IN_R |
![]() |
A
| |
* | XST_L |
![]() |
A
| |
* | ALL_R |
![]() |
A
| |
* | EQL_LR |
![]() |
![]() ![]() |
A
|
* | EQL_RL |
![]() |
![]() ![]() |
A
|
SUBSET_INTER |
![]() |
where ![]() ![]() ![]() |
A
| |
IN_INTER |
![]() |
where ![]() ![]() ![]() |
A
| |
NOTIN_INTER |
![]() |
where ![]() ![]() ![]() |
A
| |
* | FIN_L_LOWER_BOUND_L |
![]() |
The goal is discharged | A
|
* | FIN_L_LOWER_BOUND_R |
![]() |
The goal is discharged | A
|
* | FIN_L_UPPER_BOUND_L |
![]() |
The goal is discharged | A
|
* | FIN_L_UPPER_BOUND_R |
![]() |
The goal is discharged | A
|
* | CONTRADICT_L |
![]() |
M
| |
* | CONTRADICT_R |
![]() |
M
| |
* | CASE |
![]() |
M
| |
IMP_CASE |
![]() |
M
| ||
* | MH |
![]() |
M
| |
* | HM |
![]() |
M
| |
EQV |
![]() |
M
| ||
* | OV_SETENUM_L |
![]() |
where ![]() |
A
|
* | OV_SETENUM_R |
![]() |
where ![]() |
A
|
* | OV_L |
![]() |
where ![]() |
A
|
* | OV_R |
![]() |
where ![]() |
A
|
* | DIS_BINTER_R |
![]() |
where ![]() ![]() ![]() |
M
|
* | DIS_BINTER_L |
![]() |
where ![]() ![]() ![]() |
M
|
* | DIS_SETMINUS_R |
![]() |
where ![]() ![]() ![]() |
M
|
* | DIS_SETMINUS_L |
![]() |
where ![]() ![]() ![]() |
M
|
* | SIM_REL_IMAGE_R |
![]() |
M
| |
* | SIM_REL_IMAGE_L |
![]() |
M
| |
* | SIM_FCOMP_R |
![]() |
M
| |
* | SIM_FCOMP_L |
![]() |
M
| |
* | FIN_SUBSETEQ_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_BINTER_R |
![]() |
M
| |
FIN_KINTER_R |
![]() |
where ![]() |
M
| |
FIN_QINTER_R |
![]() |
M
| ||
* | FIN_SETMINUS_R |
![]() |
M
| |
* | FIN_REL |
![]() |
where ![]() |
A
|
* | FIN_REL_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_REL_IMG_R |
![]() |
M
| |
* | FIN_REL_RAN_R |
![]() |
M
| |
* | FIN_REL_DOM_R |
![]() |
M
| |
* | FIN_FUN_DOM |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
|
* | FIN_FUN_RAN |
![]() |
where ![]() ![]() ![]() ![]() |
A
|
* | FIN_FUN1_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN2_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_IMG_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_RAN_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_DOM_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | LOWER_BOUND_L |
![]() |
![]() |
M
|
* | LOWER_BOUND_R |
![]() |
![]() |
M
|
* | UPPER_BOUND_L |
![]() |
![]() |
M
|
* | UPPER_BOUND_R |
![]() |
![]() |
M
|
* | FIN_LT_0 |
![]() |
M
| |
* | FIN_GE_0 |
![]() |
M
| |
CARD_INTERV |
![]() |
where ![]() |
M
| |
CARD_EMPTY_INTERV |
![]() |
where ![]() |
M
| |
* | DERIV_LE_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_GE_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_LT_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_GT_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_EQUAL_CARD |
![]() |
![]() ![]() |
M
|
SIMP_CARD_SETMINUS_L |
![]() |
where ![]() |
M | |
SIMP_CARD_SETMINUS_R |
![]() |
where ![]() |
M
| |
SIMP_CARD_CPROD_L |
![]() |
where ![]() |
M | |
SIMP_CARD_CPROD_R |
![]() |
where ![]() |
M
| |
* | FORALL_INST |
![]() |
![]() ![]() |
M
|
* | FORALL_INST_MP |
![]() |
![]() ![]() |
M
|
* | FORALL_INST_MT |
![]() |
![]() ![]() |
M
|
* | CUT |
![]() |
hypothesis ![]() |
M
|
* | EXISTS_INST |
![]() |
![]() ![]() |
M
|
* | DISTINCT_CASE |
![]() |
case distinction on predicate ![]() |
M
|
* | ONE_POINT_L |
![]() |
The rule can be applied with ![]() ![]() |
A
|
* | ONE_POINT_R |
![]() |
The rule can be applied with ![]() ![]() |
A |
See also Extension Proof Rules#Inference Rules.