Inference Rules: Difference between revisions
From Event-B
Jump to navigationJump to search
imported>Billaude m IMP_CASE is now marked as implemented. |
imported>Billaude No edit summary |
||
Line 112: | Line 112: | ||
{{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A | {{RRRow}}|*||{{Rulename|OV_R}}|| <math>\frac{\textbf{H},\; G \in \dom(g) \;\;\vdash\;\;\textbf{Q}(g(G)) \qquad \textbf{H},\; \neg\, G \in \dom(g) \;\;\vdash\;\;\textbf{Q}((\dom(g) \domsub f)(G))}{\textbf{H} \;\;\vdash \;\; \textbf{Q}((f\ovl g)(G))}</math> || where <math>\mathbf{Q}</math> is WD strict || A | ||
{{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> || where | {{RRRow}}|*||{{Rulename|DIS_BINTER_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \binter f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \binter T])}</math> || where <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> || where | {{RRRow}}|*||{{Rulename|DIS_BINTER_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \binter f[T]) \;\;\vdash\;\;\textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \binter T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> || where | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_R}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H} \;\;\vdash\;\;\textbf{Q}(f[S] \setminus f[T]) }{\textbf{H} \;\;\vdash \;\; \textbf{Q}(f[S \setminus T])}</math> || where <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> || where | {{RRRow}}|*||{{Rulename|DIS_SETMINUS_L}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; f^{-1} \in A \pfun B \qquad\textbf{H},\;\textbf{Q}(f[S] \setminus f[T]) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\; \textbf{Q}(f[S \setminus T]) \;\;\vdash \;\; \textbf{G}}</math> || where <math>A</math> and <math>B</math> denote types. || M | ||
{{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])} </math> || || M | {{RRRow}}|*||{{Rulename|SIM_REL_IMAGE_R}}|| <math>\frac{\textbf{H} \; \; \vdash \; \; {WD}(\textbf{Q}(\{ f(E)\} )) \qquad\textbf{H} \; \; \vdash \; \; \textbf{Q}(\{ f(E)\} ) }{\textbf{H} \; \; \vdash \; \; \textbf{Q}(f[\{ E\} ])} </math> || || M | ||
Line 195: | Line 195: | ||
{{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | {{RRRow}}|*||{{Rulename|DERIV_EQUAL_CARD}}|| <math>\frac{\textbf{H} \;\;\vdash\;\; S = T}{\textbf{H} \;\;\vdash\;\; \card(S) = \card(T)}</math> || <math>S</math> and <math>T</math> bear the same type || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \textbf{G}} </math>|| | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card(S) - \card(S\binter T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \setminus T)) \;\;\vdash\;\; \textbf{G}} </math>|| || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus T))} </math>|| | {{RRRow}}| ||{{Rulename|SIMP_CARD_SETMINUS_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) - \card(S\binter T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \setminus T))} </math>|| || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \textbf{G}} </math>|| | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_L}}||<math>\frac{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(S) \qquad \textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \finite(T) \qquad \textbf{H},\, \textbf{P}(\card(S) * \card(T)) \;\;\vdash\;\; \textbf{G}}{\textbf{H},\, \textbf{P}(\card (S \cprod T)) \;\;\vdash\;\; \textbf{G}} </math>|| || M | ||
{{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod T))} </math>|| | {{RRRow}}| ||{{Rulename|SIMP_CARD_CPROD_R}}||<math>\frac{\textbf{H} \;\;\vdash\;\; \finite(S) \qquad \textbf{H} \;\;\vdash\;\; \finite(T) \qquad \textbf{H} \;\;\vdash\;\; \textbf{P}(\card(S) * \card(T))}{\textbf{H} \;\;\vdash\;\; \textbf{P}(\card (S \cprod T))} </math>|| || M | ||
{{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M | {{RRRow}}|*||{{Rulename|FORALL_INST}}|| <math>\frac{\textbf{H} \;\;\vdash \;\; {WD}(E) \qquad \textbf{H} , [x \bcmeq E]\textbf{P} \;\;\vdash \;\; \textbf{G}}{\textbf{H}, \forall x \qdot \textbf{P} \;\;\vdash\;\; \textbf{G}}</math> || <math>x</math> is instantiated with <math>E</math> || M |
Revision as of 11:16, 23 August 2011
CAUTION! Any modification to this page shall be announced on the User mailing list!
Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.
Name | Rule | Side Condition | A/M
| |
---|---|---|---|---|
* | HYP |
![]() |
A
| |
* | HYP_OR |
![]() |
A
| |
* | CNTR |
![]() |
A
| |
* | FALSE_HYP |
![]() |
A
| |
* | TRUE_GOAL |
![]() |
A
| |
* | FUN_GOAL |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
|
* | FUN_IMAGE_GOAL |
![]() |
where ![]() ![]() |
M
|
FUN_GOAL_REC |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
| |
* | DBL_HYP |
![]() |
A
| |
* | AND_L |
![]() |
A
| |
* | AND_R |
![]() |
A
| |
IMP_L1 |
![]() |
A
| ||
* | IMP_R |
![]() |
A
| |
* | IMP_AND_L |
![]() |
A
| |
* | IMP_OR_L |
![]() |
A
| |
* | AUTO_MH |
![]() |
A
| |
* | NEG_IN_L |
![]() |
A
| |
* | NEG_IN_R |
![]() |
A
| |
* | XST_L |
![]() |
A
| |
* | ALL_R |
![]() |
A
| |
* | EQL_LR |
![]() |
![]() ![]() |
A
|
* | EQL_RL |
![]() |
![]() ![]() |
A
|
SUBSET_INTER |
![]() |
where ![]() ![]() ![]() |
A
| |
IN_INTER |
![]() |
where ![]() ![]() ![]() |
A
| |
NOTIN_INTER |
![]() |
where ![]() ![]() ![]() |
A
| |
* | FIN_L_LOWER_BOUND_L |
![]() |
The goal is discharged | A
|
* | FIN_L_LOWER_BOUND_R |
![]() |
The goal is discharged | A
|
* | FIN_L_UPPER_BOUND_L |
![]() |
The goal is discharged | A
|
* | FIN_L_UPPER_BOUND_R |
![]() |
The goal is discharged | A
|
* | CONTRADICT_L |
![]() |
M
| |
* | CONTRADICT_R |
![]() |
M
| |
* | CASE |
![]() |
M
| |
* | IMP_CASE |
![]() |
M
| |
* | MH |
![]() |
M
| |
* | HM |
![]() |
M
| |
EQV |
![]() |
M
| ||
* | OV_SETENUM_L |
![]() |
where ![]() |
A
|
* | OV_SETENUM_R |
![]() |
where ![]() |
A
|
* | OV_L |
![]() |
where ![]() |
A
|
* | OV_R |
![]() |
where ![]() |
A
|
* | DIS_BINTER_R |
![]() |
where ![]() ![]() |
M
|
* | DIS_BINTER_L |
![]() |
where ![]() ![]() |
M
|
* | DIS_SETMINUS_R |
![]() |
where ![]() ![]() |
M
|
* | DIS_SETMINUS_L |
![]() |
where ![]() ![]() |
M
|
* | SIM_REL_IMAGE_R |
![]() |
M
| |
* | SIM_REL_IMAGE_L |
![]() |
M
| |
* | SIM_FCOMP_R |
![]() |
M
| |
* | SIM_FCOMP_L |
![]() |
M
| |
* | FIN_SUBSETEQ_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_BINTER_R |
![]() |
M
| |
FIN_KINTER_R |
![]() |
where ![]() |
M
| |
FIN_QINTER_R |
![]() |
M
| ||
* | FIN_SETMINUS_R |
![]() |
M
| |
FIN_REL |
![]() |
where ![]() |
A
| |
* | FIN_REL_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_REL_IMG_R |
![]() |
M
| |
* | FIN_REL_RAN_R |
![]() |
M
| |
* | FIN_REL_DOM_R |
![]() |
M
| |
FIN_FUN_DOM |
![]() |
where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A
| |
FIN_FUN_RAN |
![]() |
where ![]() ![]() ![]() ![]() |
A
| |
* | FIN_FUN1_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN2_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_IMG_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_RAN_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | FIN_FUN_DOM_R |
![]() |
the user has to write the set corresponding to ![]() |
M
|
* | LOWER_BOUND_L |
![]() |
![]() |
M
|
* | LOWER_BOUND_R |
![]() |
![]() |
M
|
* | UPPER_BOUND_L |
![]() |
![]() |
M
|
* | UPPER_BOUND_R |
![]() |
![]() |
M
|
* | FIN_LT_0 |
![]() |
M
| |
* | FIN_GE_0 |
![]() |
M
| |
CARD_INTERV |
![]() |
where ![]() |
M
| |
CARD_EMPTY_INTERV |
![]() |
where ![]() |
M
| |
* | DERIV_LE_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_GE_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_LT_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_GT_CARD |
![]() |
![]() ![]() |
M
|
* | DERIV_EQUAL_CARD |
![]() |
![]() ![]() |
M
|
SIMP_CARD_SETMINUS_L |
![]() |
M | ||
SIMP_CARD_SETMINUS_R |
![]() |
M
| ||
SIMP_CARD_CPROD_L |
![]() |
M | ||
SIMP_CARD_CPROD_R |
![]() |
M
| ||
* | FORALL_INST |
![]() |
![]() ![]() |
M
|
* | FORALL_INST_MP |
![]() |
![]() ![]() |
M
|
* | FORALL_INST_MT |
![]() |
![]() ![]() |
M
|
* | CUT |
![]() |
hypothesis ![]() |
M
|
* | EXISTS_INST |
![]() |
![]() ![]() |
M
|
* | DISTINCT_CASE |
![]() |
case distinction on predicate ![]() |
M
|
* | ONE_POINT_L |
![]() |
The rule can be applied with ![]() ![]() |
A
|
* | ONE_POINT_R |
![]() |
The rule can be applied with ![]() ![]() |
A |
See also Extension Proof Rules#Inference Rules.