Code Generation Activity
Tasking Event-B is the extension of Event-B for defining concurrent systems sharing data, for details see the Tasking Event-B Overview page. For more information contact Andy Edmunds - University of Southampton - mailto:ae2@ecs.soton.ac.uk
Code Generation Feature - Version 0.2.0 For Rodin 2.3
This section is undergoing maintenance. We are planning to release a new version of the code generator in the next few days. The main changes are:
- The new code generators have been completely re-written. The translators are now implemented in Java, i.e. there is no longer a dependence on the Epsilon tool set. This was undertaken for code maintenance reasons.
- Tasking Event-B is now integrated with the Event-B explorer.
- The Rose Editor is used for editing the Tasking Event-B, and
- a TaskBody text-based editor is provided, in Rose, for specifying the flow control. This feature has been added to address some of the usability issues. It also overcomes the 'problem' experienced with duplicate event names, since the parser-builder that has been implemented, automatically selects the correct event.
- The EMF tree editor in Rose is only used minimally, and we plan further enhancements to reduce this.
- Composed machines are used to store event 'synchronizations'. This reduces the amount of typing in the TaskBody editor, since we no longer need to specify both local and remote (synchronizing) events.
- The code generation approach is now extensible; new target language constructs can be added using the Eclipse extension mechanism.
- The translation, of the mathematical language of target languages, is specified in the Theory plug-in.
- Translated code is deposited in a directory in the appropriate files. An Ada project file is generated for use with AdaCore's GPS workbench. Eventually this could be enabled/disabled in a preferences dialog box.
- Tasking Event-B to Event-B translator in fully integrated. Control variable updates, to the Event-B model, are made in a similar way to the equivalent updates in the state-machine plug-in.
TODO
- Add array types.
- Add addressed variables (for direct read/write access to memory)
- Flattening of composed machines/implementation machines.
- Interrupts
Sensing and Actuating for Tasking Event-B
Version 0.1.5. Sensing and actuating events, and an Environ Machine have been added to allow simulation of the environment and implementation using memory mapped IO.
- The new v0.1.5 feature is available from the Rodin Update Site, it resides in the Utilities Category.
- As in previous releases, the code generation plug-in relies on the Epsilon tool suite. Add the following Epsilon interim update site to the list of available update sites in the Eclipse menu help/install new software: http://download.eclipse.org/modeling/gmt/epsilon/interim/
- Select 'the Epsilon Core (Incubation)' component, this is the only component that is required for Tasking Event-B.
A new Code Generation Tutorial has been produced, that makes use of these new features. There is an explanation of the heating controller, upon which it is based, here.
The example/tutorial projects, and also and a Bundled Windows 7 version, are available in the Deploy E-Prints archive or Examples SVN site.
The Code Generation Demonstrator for Rodin 2.1.x
Released 24 January 2011.
The Rodin 2.1.x compatible code generation demonstrator plug-ins have been released into the Rodin Sourceforge repository at:
https://rodin-b-sharp.svn.sourceforge.net/svnroot/rodin-b-sharp/trunk/CodeGeneration
The update-site is available through the Rodin update site in the Utilities category.
The code generation tutorial examples are available for download at:
https://sourceforge.net/projects/codegenerationd/files/DemoFiles/
The code generation plug-in relies on the Epsilon tool suite. Install Epsilon manually, since the automatic install utility does not seem to work for this feature. We currently use the Epsilon interim update site available at:
http://download.eclipse.org/modeling/gmt/epsilon/interim/
Select 'the Epsilon Core (Incubation)' component, this is the only component that is required for Tasking Event-B.
Code Generation Status
Latest Developments
- Demonstrator plug-in feature version 0.1.0
- for Rodin 2.1.x version is available.
- The Code Generation feature consists of,
- a tasking Development Generator.
- a tasking Development Editor (Based on an EMF Tree Editor).
- a translator, from Tasking Development to Common Language Model (IL1).
- a translator, from the Tasking Development to Event-B model of the implementation.
- a pretty-printer for the Tasking Development.
- a pretty-printer for Common Language Model, which generates Ada Source Code.
- A tutorial is available Code Generation Tutorial
- Step 1 - Create the tasking development.
- Step 2 - Add annotations.
- Step 3 - Invoke translators.
Ongoing Work
- Full Rodin Integration
- Sensed Variables
- Branching in Shared Machines
Future Work
- Support for Interrupts.
- Richer DataTypes.
- Accommodation of duplicate event names in tasking developments.
Metamodels
- In the plug-in we define several meta-models:
- CompositeControl: for the control flow (algorithmic) constructs such as branch, loop and sequence etc. These constructs may be used in the specification of either sequential or concurrent systems.
- Tasking Meta-model: defines the tasking model where we attach tasking specific details, such as task priority, task type. The tasking structures provide the ability to define single tasking or multi-tasking (concurrent) systems. We make use of the composite control plug-in to specify the flow of control.
- Common Language (IL1) Meta-model: defines an abstraction of common programming language constructs for use in translations to implementations.
Translation Rules
- Tasking to IL1/Event-B translation rules [[1]]
Release History
The Code Generation Demonstrator for Rodin 1.3.x
First release: 30 November 2010.
available from:
https://sourceforge.net/projects/codegenerationd/files/
The zip file contains a windows XP bundle, and a Windows V7 bundle. Alternatively, if you wish to build using an update-site, this is also included in the zip file, along with some notes on installation. However, note that the demonstrator tool is only compatible with Rodin 1.3.
A simple shared buffer example is provided. This will form the basis of a tutorial (which is work in progress). The WindowsBundles directory contains a Rodin 1.3.1 platform with the Code Generation plug-ins, together with a patch plug-in. The patch plug-in is required to correct an inconsistency in the org.eventb.emf.persistence plug-in. For the bundles, simply extract the appropriate zip file into a directory and run the rodin.exe. The plug-ins are pre-installed - the only configuration necessary may be to switch workspace to <installPath>\rodin1.3bWin7\workspace. When using the update-site the example projects, and the project forming the basis of a simple tutorial, are provided in the accompanying zip file. These should be imported manually.
Mac users - no bundled version available at present, but use the update site in the 'advanced' folder.
A step-by-step Code Generation Tutorial is available
About the Initial Release
The Code Generation (CG) Feature in the initial release is a demonstration tool; a proof of concept, rather than a prototype. The tool has no static checker and, therefore, there will be a heavy reliance on docs and dialogue to facilitate exploration of the tools and concepts.
Source Code
The sources are available from,
https://codegenerationd.svn.sourceforge.net/svnroot/codegenerationd
Note - I used Eclipse 3.5 Galileo, and you will need to install (or have sources from) Epsilon's interim update site. There is also dependency on Camille v2.0.0