Difference between revisions of "Mathematical Extensions"

From Event-B
Jump to navigationJump to search
imported>Pascal
imported>Nicolas
Line 43: Line 43:
 
** PrettyPrint (set operator image)
 
** PrettyPrint (set operator image)
 
** getting Base / Source / Target type (type rule needed)
 
** getting Base / Source / Target type (type rule needed)
* Formula Factory
 
 
* Verification of preconditions (see for example <tt>AssociativeExpression.checkPreconditions</tt>)
 
* Verification of preconditions (see for example <tt>AssociativeExpression.checkPreconditions</tt>)
 +
 +
=== Vocabulary ===
 +
 +
An '''extension''' is to be understood as a single additional operator definition.
 +
 +
=== Tags ===
 +
 +
Every extension is associated with an integer tag, just like existing operators. Thus, questions arise about how to allocate new tags and how to deal with existing tags.<br />
 +
The solution proposed here consists in keeping existing tags 'as is'. They are already defined and hard coded in the ''Formula'' class, so this choice is made with backward compatibility in mind.
 +
 +
Now concerning extension tags, we will first define a few elements. The following definitions hold at a given instant <math>t</math>; considered scope is that of the whole platform.<br />
 +
Let <math>\mathit{EXTENSION}_t</math> be the set of extensions supported by the platform at instant <math>t</math>;<br /> let <math>\mathit{tag}_t</math> denote the affectation of tags to a extensions at instant <math>t</math> (<math>\mathit{tag}_t \in \mathit{EXTENSION}_t \pfun \intg</math>);<br /> let <math>\mathit{COMMON}</math> be the set of existing tags defined by the ''Formula'' class (<math>\mathit{COMMON} \sub \intg</math>).<br /> The following requirements emerge:
 +
* <math>\forall t \qdot \mathit{tag}_t \in \mathit{EXTENSION}_t \tinj \intg</math>
 +
* <math>\forall e, t_1,t_2 \qdot \mathit{tag}_{t_1}(e)=\mathit{tag}_{t_2}(e)</math> where <math>t_1, t_2</math> are two instants of the same platform session
 +
* <math>\forall t \qdot \ran(\mathit{tag}_t) \cap \mathit{COMMON} = \empty</math>
 +
 +
Under assumption that formulæ are not persisted in any other form than their ''String'' representation, it is not required to maintain <math>\mathit{tag}</math> across sessions.
 +
=== Formula Factory ===
 +
 +
Solution proposée: les tags existants sont conservés et réservés; d'une façon générale, chaque tag est globalement unique. L'unicité des tags est gérée de façon centrale (statique) par la fabrique. Les extensions ne définissent pas elles-mêmes de tag, un tag leur est affecté, de façon interne par la fabrique. Le tag peut être récupéré, à partir d'une extension donnée, par interrogation de la fabrique. Dans l'autre sens, la fabrique permet de récupérer l'extension correspondant à un tag donné. L'affectation d'un tag à une extension est faite de manière dynamique par la fabrique, en fonction des extensions qui lui sont fournies au cours de l'exécution de la plateforme.
 +
 +
En ce qui concerne la persistence des informations, l'hypothèse faite ici consiste en ce que les formules ne soient pas persistées en tant que telles. Seule leur représentation textuelle est sauvegardée dans divers fichiers à travers les sessions. Ainsi, il est acceptable qu'une même extension puisse être associée à des tags différents au cours d'exécutions différentes. Autrement dit, une association entre un tag et une extension est valable et fixe jusqu'à l'extinction de la plateforme, mais pas au-delà.
  
 
== Impact on other tools ==
 
== Impact on other tools ==

Revision as of 11:51, 8 March 2010

Currently the operators and basic predicates of the Event-B mathematical language supported by Rodin are fixed. We propose to extend Rodin to define basic predicates, new operators or new algebraic types.

Requirements

User Requirements

  • Binary operators (prefix form, infix form or suffix form).
  • Operators on boolean expressions.
  • Unary operators, such as absolute values.
Note that the pipe, which is already used for set comprehension, cannot be used to enter absolute values (in fact, as in the new design the pipe used in set comprehension is only a syntaxic sugar, the same symbol may be used for absolute value. To be confirmed with the prototyped parser. It may however be not allowed in a first time until backtracking is implemented, due to use of lookahead making assumptions on how the pipe symbol is used. -Mathieu ).
  • Basic predicates (e.g., the symmetry of relations sym(R) \defi R=R^{-1}).
Having a way to enter such predicates may be considered as syntactic sugar, because it is already possible to use sets (e.g., R \in sym, where sym \defi \{R \mid R=R ^{-1}\}) or functions (e.g., sym(R) = \True, where sym \defi (\lambda R \qdot R \in A \rel B \mid \bool(R = R^{-1}))).
  • Quantified expressions (e.g., \sum x \qdot P \mid y, \prod x \qdot P \mid y, ~\min(S), ~\max(S)).
  • Types.
    • Enumerated types.
    • Scalar types.

User Input

The end-user shall provide the following information:

  • keyboard input
  • Lexicon and Syntax.
    More precisely, it includes the symbols, the form (prefix, infix, postfix), the grammar, associativity (left-associative or right associative), commutativity, priority, the mode (flattened or not), ...
  • Pretty-print.
    Alternatively, the rendering may be determined from the notation parameters passed to the parser.
  • Typing rules.
  • Well-definedness.

Development Requirements

  • Scalability.

Towards a generic AST

The following AST parts are to become generic, or at least parameterised:

  • Lexer
  • Parser
  • Nodes ( Formula class hierarchy ): parameters needed for:
    • Type Solve (type rule needed to synthesize the type)
    • Type Check (type rule needed to verify constraints on children types)
    • WD (WD predicate)
    • PrettyPrint (tag image + notation (prefix, infix, postfix) + needs parentheses)
    • Visit Formula (getting children + visitor callback mechanism)
    • Rewrite Formula (associative formulæ have a specific flattening treatment)
  • Types (Type class hierarchy): parameters needed for:
    • Building the type expression (type rule needed)
    • PrettyPrint (set operator image)
    • getting Base / Source / Target type (type rule needed)
  • Verification of preconditions (see for example AssociativeExpression.checkPreconditions)

Vocabulary

An extension is to be understood as a single additional operator definition.

Tags

Every extension is associated with an integer tag, just like existing operators. Thus, questions arise about how to allocate new tags and how to deal with existing tags.
The solution proposed here consists in keeping existing tags 'as is'. They are already defined and hard coded in the Formula class, so this choice is made with backward compatibility in mind.

Now concerning extension tags, we will first define a few elements. The following definitions hold at a given instant t; considered scope is that of the whole platform.
Let \mathit{EXTENSION}_t be the set of extensions supported by the platform at instant t;
let \mathit{tag}_t denote the affectation of tags to a extensions at instant t (\mathit{tag}_t \in \mathit{EXTENSION}_t \pfun \intg);
let \mathit{COMMON} be the set of existing tags defined by the Formula class (\mathit{COMMON} \sub \intg).
The following requirements emerge:

  • \forall t \qdot \mathit{tag}_t \in \mathit{EXTENSION}_t \tinj \intg
  • \forall e, t_1,t_2 \qdot \mathit{tag}_{t_1}(e)=\mathit{tag}_{t_2}(e) where t_1, t_2 are two instants of the same platform session
  • \forall t \qdot \ran(\mathit{tag}_t) \cap \mathit{COMMON} = \empty

Under assumption that formulæ are not persisted in any other form than their String representation, it is not required to maintain \mathit{tag} across sessions.

Formula Factory

Solution proposée: les tags existants sont conservés et réservés; d'une façon générale, chaque tag est globalement unique. L'unicité des tags est gérée de façon centrale (statique) par la fabrique. Les extensions ne définissent pas elles-mêmes de tag, un tag leur est affecté, de façon interne par la fabrique. Le tag peut être récupéré, à partir d'une extension donnée, par interrogation de la fabrique. Dans l'autre sens, la fabrique permet de récupérer l'extension correspondant à un tag donné. L'affectation d'un tag à une extension est faite de manière dynamique par la fabrique, en fonction des extensions qui lui sont fournies au cours de l'exécution de la plateforme.

En ce qui concerne la persistence des informations, l'hypothèse faite ici consiste en ce que les formules ne soient pas persistées en tant que telles. Seule leur représentation textuelle est sauvegardée dans divers fichiers à travers les sessions. Ainsi, il est acceptable qu'une même extension puisse être associée à des tags différents au cours d'exécutions différentes. Autrement dit, une association entre un tag et une extension est valable et fixe jusqu'à l'extinction de la plateforme, mais pas au-delà.

Impact on other tools

Impacted plug-ins (use a factory to build formulæ):

  • org.eventb.core
In particular, the static checker and proof obligation generator are impacted.
  • org.eventb.core.seqprover
  • org.eventb.pp
  • org.eventb.pptrans
  • org.eventb.ui

Identified Problems

The parser shall enforce verifications to detect the following situations:

  • Two mathematical extensions are not compatible (the extensions define symbols with the same name but with a different semantics).
  • A mathematical extension is added to a model and there is a conflict between a symbol and an identifier.
  • An identifier which conflicts with a symbol of a visible mathematical extension is added to a model.

Beyond that, the following situations are problematic:

  • A formula has been written with a given parser configuration and is read with another parser configuration.
As a consequence, it appears as necessary to remember the parser configuration.
The static checker will then have a way to invalid the sources of conflicts (e.g., priority of operators, etc).
The static checker will then have a way to invalid the formula upon detecting a conflict (name clash, associativity change, semantic change...) mathieu
  • A proof may free a quantified expression which is in conflict with a mathematical extension.
SOLUTION #1: Renaming the conflicting identifiers in proofs?

Open Questions

New types

Which option should we prefer for new types?

  • OPTION #1: Transparent mode.
In transparent mode, it is always referred to the base type. As a consequence, the type conversion is implicitly supported (weak typing).
For example, it is possible to define the DISTANCE and SPEED types, which are both derived from the \intg base type, and to multiply a value of the former type with a value of the latter type.
  • OPTION #2: Opaque mode.
In opaque mode, it is never referred to the base type. As a consequence, values of one type cannot be converted to another type (strong typing).
Thus, the above multiplication is not allowed.
This approach has at least two advantages:
  • Stronger type checking.
  • Better prover performances.
It also has some disadvantages:
  • need of extractors to convert back to base types.
  • need of extra circuitry to allow things like x:=d*2 where x, d are of type DISTANCE
  • OPTION #3: Mixed mode.
In mixed mode, the transparent mode is applied to scalar types and the opaque mode is applied to other types.

Scope of the mathematical extensions

  • OPTION #1: Project scope.
The mathematical extensions are implicitly visible to all components of the project that has imported them.
  • OPTION #2: Component scope.
The mathematical extensions are only visible to the components that have explicitly imported them. However, note that this visibility is propagated through the hierarchy of contexts and machines (EXTENDS, SEES and REFINES clauses).
An issue has been identified. Suppose that ext1 extension is visible to component C1 and ext2 is visible to component C2, and there is no compatibility issue between ext1 and ext2. It is not excluded that an identifier declared in C1 conflict with a symbol in ext2. As a consequence, a global verification is required when adding a new mathematical extension.

Bibliography

This proposal consists in considering three kinds of extension:
  1. Extensions of set-theoretic expressions or predicates: example extensions of this kind consist in adding the transitive closure of relations or various ordered relations.
  2. Extensions of the library of theorems for predicates and operators.
  3. Extensions of the Set Theory itself through the definition of algebraic types such as lists or ordered trees using new set constructors.