Difference between pages "Tasking Event-B Overview" and "Tasking Event-B Tutorial"

From Event-B
(Difference between pages)
Jump to navigationJump to search
imported>Andy
 
imported>Andy
 
Line 1: Line 1:
=== Tasking Event-B ===
+
THIS PAGE IS UNDER CONSTRUCTION !!!!!!
Tasking Event-B can be viewed as an extension of the existing Event-B language. We use the existing approaches of refinement and decomposition to structure a project that is suitable for a Tasking Development. During the modelling phase parameters are introduced to facilitate decomposition. As a result of the decomposition process, parameters become part of the interface that enables event synchronization. We make use of this interface and add information (see [[#Implementing Events]]) to facilitate code generation. The tasking extension consists of the constructs in the following table.
+
 
 +
For more information contact Andy Edmunds - University of Southampton - mailto:ae2@ecs.soton.ac.uk
 +
=== Tasking Event-B Tutorial Overview ===
 +
 
 +
This code generation tutorial supplements the Heating Controller tutorial example, and makes use of example projects from the download site. The code generation stage produces implementable Ada code, and also an Event-B project which models the implementation. The Ada code is produced using a pretty printer tool from an intermediate model, the Common Language model (IL1), generated by a translation tool. An overview of Tasking Event-B can be found on the [[Tasking_Event-B_Overview]] page.
 +
 
 +
The Heating Controller development has been refined to the point where we wish to add implementation constructs. The Event-B language is not expressive enough to fully describe the implementation. Tasking Event-B facilitates this final step to implementation, by extending Event-B with the necessary constructs. Event-B machines that are to be implemented (and their seen Contexts) are selected and added to a ''Tasking Development''; the Tasking Development files have the file extension ''.tasking''. The machines in the Tasking Development are then extended with implementation details.
 +
 
 +
The example/tutorial projects are,
  
<center>
 
 
{| border="1"
 
{| border="1"
!Construct
+
|Heating_ControllerTutorial_Completed
!Options
+
|An example project with a completed Tasking Development and IL1 model (post IL1 translation, but before Event-B translation).
 
|-
 
|-
|Machine Type
+
|Heating_ControllerTutorial_Completed_Gen
|DeclaredTask, [http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Tasking_Machines AutoTask], [http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Shared_Machines Shared], [http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#The_Environ_Machine Environ]
+
|Same as the example project above, but with Event-B model translations. The difference being that this development includes a model of the implementation. These are refinements that include a program counter to describe flow of execution in each task.
 
|-
 
|-
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Control_Constructs Control]
+
|Heating_ControllerTutorial_Step1
|Sequence, Loop, Branch, Event, Output
+
|A bare project for step 1 of the [[Code_Generation_Tutorial#The_Tutorial |tutorial]].
 
|-
 
|-
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Tasking_Machines Task Type]
+
|Heating_ControllerTutorial_Step2
|Periodic(n), Triggered, Repeating, OneShot
+
|A partially completed tasking development for steps 2, 3 and 4 of the [[Code_Generation_Tutorial#The_Tutorial |tutorial]].
|-
 
|Priority
 
| -
 
|-
 
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Implementing_Events Event Role]
 
| Actuating, Sensing
 
|-
 
|[http://wiki.event-b.org/index.php/Tasking_Event-B_Overview#Addressed_Variables Addressed Variable]
 
|Address, Base
 
 
|}
 
|}
</center>
 
  
==== Tasking Machines ====
+
== Preliminaries ==
The following constructs relate to Tasking and Environ Machines, and provide implementation details. Timing of periodic tasks is not modelled formally. Tasking and Environ Machines model Ada tasks, so they can be implemented easily in Ada; in C using the pthread library, or in Java using threads.
+
Before further discussion of the modelling aspects, we take a look at the PrettyPrint viewers. The PrettyPrinters make the viewing of IL1 and tasking models easier; it also provides a route to generate source code. The source code can easily be pasted from the IL1 Pretty Printer window into an the Ada source file .
 +
==== The PrettyPrint View of a Tasking Development ====
 +
To open the Tasking PrettyPrint viewer,
 +
* from the top-menu select ''Window/Show View/Other/Tasking Pretty Printer''.
 +
 
 +
Note that the Tasking PrettyPrinter may have to be closed when editing the Tasking Development, since it can give rise to exceptions. The PrettyPrinter would need further work to make it robust, however it is intended only as a short-term solution.
 +
 
 +
* Open the ''Heating_ControllerTutorial_Completed'' Project and switch to the Resource Perspective.
 +
* Open the ''.tasking'' model and inspect it. Clicking on the Main, Machine or Event nodes updates the pretty print window.
 +
 
 +
==== Viewing Source Code ====
 +
aka. The PrettyPrint View of an IL1 Model.
 +
 
 +
To view Ada source code,
 +
* from the top-menu select ''Window/Show View/Other/IL1 Pretty Printer''.
 +
* Open the ''Heating_ControllerTutorial_Completed'' Project and switch to the Resource Perspective.
 +
* Open the ''.il1'' model and inspect it. Clicking on the Protected, Main Entry, or Task nodes updates the pretty print window.
 +
 
 +
==== Cleaning the Tasking Development ====
 +
If the ''.tasking'' file has errors, then it may need cleaning. To do this right-click on the ''Main'' node, select ''Epsilon Translation/CleanUp''. If a model has errors it can still be viewed by clicking on the ''Selection'' tab at the bottom of the tasking editor window.
 +
 
 +
== Using the Tasking Extension ==
 +
The steps needed to generate code from an Event-B model, in this tutorial, are as follows,
 +
* Step 1 - [[Tasking Event-B_Tutorial#Creating The Tasking Development|Create the tasking development]].
 +
* Step 2 - [[Tasking Event-B_Tutorial#Providing the Annotations for Implementations|Add Tasking annotations]].
 +
* Step 3 - [[Tasking Event-B_Tutorial#Optional Annotations for Addressed Variables|Add annotations for addressed variables (optional)]].
 +
* Step 4 - [[Tasking Event-B_Tutorial#Invoking the Translation|Invoke translators]].
 +
 
 +
==== Creating The Tasking Development ====
 +
* Change to the Event-B Perspective.
 +
* Open the ''Heating_ControllerTutorial_Step1'' Project.
 +
* Select the following Machines: Display_Update_Task1, Envir1, Heater_Monitor_Task1, Shared_Object1, Temp_Ctrl_Task1 and HC_CONTEXT.
 +
* Right-click and select ''Make Tasking Development/Generate Tasking Development''.
 +
 
 +
The new Tasking Development will not be visible in the Event-B perspective, change to the resource perspective, open and inspect the new ''.tasking'' file. The Tasking Development contains (the EMF representation of) the machines that we wish to provide implementations for. In order to introduce the new concepts we have prepared a partially complete development.
 +
 
 +
* Change the tasking development, if necessary, so that the machine that models the environment is at the top of the tree of machines.
 +
 
 +
In the simulation implementation, elements of the Environ machine must be declared first.
 +
 
 +
Change to the Project ''Heating_ControllerTutorial_Step2'' to begin the next step.
 +
 
 +
==== Providing the Annotations for Implementations ====
 +
* Close any Tasking Pretty Print Viewers that remain open. The incomplete model will give rise to exceptions.
 +
* Go to the to the Resource Perspective.
 +
* Open and inspect the ''.tasking'' machine.
 +
 
 +
The ''Temp_Ctrl_Task1Impl'', ''Envir1'' and ''Shared_Object1'' machines are incomplete. We will take the necessary steps to provide implementation details.  
 +
 
 +
===== The Temp_Ctrl_Task1Impl Machine =====
 +
In the partially complete tutorial project we have already identified the ''Temp_Ctrl_Task1Impl'' as an ''Auto Task'' Tasking Machine, by adding the ''Auto Task'' extension. ''Auto Tasks'' are tasks that will be declared and defined in the ''Main'' procedure of the implementation. The effect of this is that the ''Auto Tasks'' are created when the program first loads, and then activated (made ready to run) before the ''Main'' procedure body runs. We have added the ''Periodic Task'' extension to the ''Auto Task'', and set a period of 250 milliseconds. We have provided a PrettyPrint view of the completed [http://wiki.event-b.org/images/Temp_Ctrl_Task1Impl.pdf Temp_Ctrl_Task1Impl] that can be read in conjunction with the tutorial.
 +
 
 +
We will now complete the sequence that has been partially defined in the task body.
 +
 
 +
*'''Add Sensing between TCSense_Temperatures and ENSense_Temperatures'''.
 +
** Expand the Temp_Ctrl_Task1Impl ''Auto Task Machine'' node.
 +
** Expand the ''Seq'' sub-tree.
 +
** Right-click on the ''Seq'' node and select ''New Child/Left Branch EventWrapper''.
 +
** Provide the event label ''tc1'' using the properties view.
 +
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 +
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 +
** At this point the drop-down box displays a number of event names, select the '''second''' ''TCSense_Temperatures'' event.
 +
** Go to the drop-down menu of the ''Remote Event'' property.
 +
** From the list of events select the '''first''' ''ENSense_Temperatures'' event.
 +
 
 +
By relating the sensing events in this way we describe a simulation of the interaction between the task and environment. The details of the interaction are embodied in the events themselves. This is implemented in the simulation code as a write to environment variables using a subroutine call.
 +
 
 +
Note that the Synch Events construct is used in several ways. We use it to implement [[Tasking Event-B Overview#Control Constructs|Event Synchronisation]]; sensing and actuation; and as a simple event wrapper. An example of its use in a simple event wrapper follows. The simple event wrapper is used to update local state; there is no synchronisation, as such, but we re-use the constructs that already exist rather than create new ones. We now add a wrapped event to the sequence:
 +
 
 +
*'''Add the Wrapped Event TCCalculate_Average_Temperature'''.
 +
** Expand the sub-tree of the second ''Seq'' node.
 +
** Right-click on the ''Seq'' node and select ''New Child/Left Branch EventWrapper''.
 +
** Provide the event label ''tc2'' using the properties view.
 +
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 +
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 +
** From the list of events select the ''TCCalculate_Average_Temperature'' event.
 +
 
 +
The addition of the wrapped event, to the sequence, is simply specification of event ordering. It is implemented in code as a sequential subroutine call statement. We now specify event synchronisation between the task and shared object:
 +
 
 +
*'''Add Synchronisation between TCGet_Target_Temperature2 and SOGet_Target_Temperature2'''.
 +
** Further expand the ''Seq'' sub-tree until Eventwrapper tc3 appears.
 +
** Right-click on the sibling ''Seq'' node (lowest in the tree) and select ''New Child/Left Branch EventWrapper''.
 +
** Provide the event label ''tc4'' using the properties view.
 +
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 +
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 +
** At this point the drop-down box displays a number of event names, select the '''second''' ''TCGet_Target_Temperature2'' event.
 +
** Go to the drop-down menu of the ''Remote Event'' property.
 +
** From the list of events select the '''second''' ''SOGet_Target_Temperature2'' event.
 +
 
 +
We have now completed the task body, and next provide additional details for events. In the first instance we focus on the the ''TCGet_Target_Temperature2 '' event in ''Temp_Ctrl_Task1Impl'' which is to be synchronized with the ''SOGet_Target_Temperature2 '' event in ''Shared_Object1Impl''.
 +
 
 +
*'''Add The Event Synchronisation Extension'''.
 +
** Right-click on the ''TCGet_Target_Temperature2'' Event node.
 +
** Select ''New Child/Implementation'' from the menu.
 +
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''ProcedureSynch''.
 +
 
 +
We have identified the event as one that partakes in a synchronisation.
 +
 
 +
*'''Identify a parameter direction'''.
 +
** Right-click on the ''tm'' node.
 +
** Select''New Child/Parameter Type''.
 +
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''actualIn''.
 +
 
 +
We have now identified the parameter as an actualIn (this models a call's return value).
 +
 
 +
Next we look at the sensing event ''TCSense_Temperatures'' event in ''Temp_Ctrl_Task1Impl''. Sensing (and actuating) can be viewed as a kind of synchronisation. The simulation code has a subroutine corresponding to the ''ENSense_Temperatures'' event in the Environ machine ''Envir1Impl'':
 +
 
 +
*'''Add The Sensed Event Extension'''.
 +
** Right-click on the ''TCSense_Temperatures'' Event node.
 +
** Select ''New Child/Implementation'' from the menu.
 +
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''Sensing''.
 +
 
 +
We have identified the event as a sensing event. Now we add the parameter direction:
 +
 
 +
*'''Identify parameter directions'''.
 +
** Right-click on the ''t1'' node.
 +
** Select''New Child/Parameter Type''.
 +
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''actualIn''.
 +
** Right-click on the ''t2'' node.
 +
** Select''New Child/Parameter Type''.
 +
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''actualIn''.
  
* Tasking Machines may be one of the following types:
+
We have now identified the parameters as an actualIn (modelling a simulation's subroutine call return value).
** AutoTasks - Anonymous Tasks running from start-up.
 
** Declared tasks - (Not currently used) A task template relating to an Ada ''tasktype'' declaration.  
 
  
''Auto Tasks'' are tasks that will be declared and defined in the ''Main'' procedure of the implementation. The effect of this is that the ''Auto Tasks'' are created when the program first loads, and then activated (made ready to run) before the ''Main'' procedure body runs.
+
===== The Shared Machine =====
  
* Tasking and Environ Machines options are:
+
The next step is to identify the ''Shared_Object1Impl'' machine as a ''Shared Machine''. A PrettyPrint view of the [http://wiki.event-b.org/images/Shared_Object1Impl.pdf Shared_Object1Impl] shared machine can be read in conjunction with the text. The ''Shared_Object1Impl'' Machine will be extended using the Event-B extension mechanism.
** TaskType - Defines the scheduling, cycle and lifetime of a task. i.e. one-shot periodic or triggered. The period of a task is specified in milliseconds.
+
* Right-click on the ''Shared_Object'' Machine node in the ''.tasking'' file.
** Priority - An integer value is supplied, the task with the highest value priority takes precedence when being scheduled. The default priority is 5.
+
* Select ''New Child/Shared Machine'' from the menu.
  
==== Shared Machines ====
+
We now show how to extend the ''SOGet_Target_Temperature2'' event of the Shared Machine with details about its implementation. The ''SOGet_Target_Temperature2'' event in ''Shared_Object1Impl'' synchronizes with the ''TCGet_Target_Temperature2'' event in the '' Temp_Ctrl_Task1Impl''.
A Shared Machine models a protected resource, such as a monitor. It may be implemented in Ada as a Protected Object, in C using mutex locking, or in Java as a monitor.
 
  
* A Shared Machine is identified using the ''Shared Machine'' annotation.
+
* '''Identify SOGet_Target_Temperature2 as a Synchronized event'''.
 +
** Right-click on the ''SOGet_Target_Temperature2 '' Event node.
 +
** Select ''New Child/Implementation'' from the menu.
 +
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''ProcedureSynch''.
  
==== The Environ Machine ====
+
* '''Identify the outgoing (return) parameter'''.
An Environ machine is a model of the environment. It can be used to generate code for use in a simulation, or be discarded in the case that a simulated environment is not required.
+
** Right-click on the ''tm'' node.
 +
** Select ''New Child/Parameter Type''.
 +
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''formalOut''.
  
* An Environ Machine is identified using the ''Environ Machine'' annotation.
+
===== The Environ Machine =====
 +
In the prepared machine we have identified the ''Envir1Impl'' as an ''Environ Machine'', by adding the ''Environ Machine'' extension. ''Envir1Impl'' models a task that simulates the environment, and can be used to generate simulation code. For deployment in a non-simulated environment the environ machine's generated code can be ignored; we provide details of non-simulated code using addressed variables later. As before, a [http://wiki.event-b.org/images/Envir1Impl_2.pdf PrettyPrint] view is available. We have added the ''Periodic Task'' extension to the ''Auto Task'', and set a period of 100 milliseconds.
 +
 +
We will now complete the sequence that has been partially defined in the task body. The following specification models simulation of a temperature change; the temperature value is represented by a monitored variable in the environment. The generated code simulates the temperature change in the environment by changing the monitored value.
  
=== Control of Program Flow ===
+
*'''Model Temperature Change in the environment'''.
At the implementation stage we need to think about controlling the flow of execution; and where interaction with the environment is concerned, how events should be implemented. The following section describes the constructs that we have introduced to facilitate this.
+
** Expand the Environ1Impl ''Environ Machine'' node.
==== Control Constructs ====
+
** Expand the ''Seq'' sub-tree fully.
Each Tasking Machine has a ''task body'' which contains the flow control (algorithmic constructs).  
+
** Right-click on the last ''Seq'' node in the tree and and select ''New Child/Left Branch EventWrapper''.
 +
** Provide the event label ''e4'' using the properties view.
 +
** Right-click on Event Wrapper and select ''New Child/ Synch Events''.
 +
** Select ''Synch Events'' and go to the drop-down menu of the ''Local Event'' property.
 +
** At this point the drop-down box displays a number of event names, select the '''first''' ''ENAlter_Temperature_Sensor1'' event.
  
* We have the following constructs available in the Tasking Machine body:
+
Output to the screen during the simulation can be specified as follows:
** Sequence - for imposing an order on events.
 
** Branch - choice between a number of mutually exclusive events.
 
** Loop - event repetition while it's guard remains true.
 
** Event - a wrapper for the Event-B element (soon to be redundant). 
 
** Text Output - writes textual output to the screen.
 
  
The syntax for task bodies, as used in the Rose TaskBody editor, is as follows:
+
*'''Text Output during Simulation.'''.
 +
** Right-click on the last ''Seq'' node in the tree and and select ''New Child/Right Branch Output''.
 +
** Select the ''Output'' node, and in the properties menu select the ''Element'' property drop down box.
 +
** Select the ''last'' variable ''ctd'' that appears in the list.
 +
** In the ''Text'' property field, add a textual description to accompany the text output.
  
<br/>
+
The generated code will print the text, and the value of the variable, to the screen. The next step is to identify the ''ENAlter_Temperature_Sensor1'' as a ''ProcedureDef''.  
[[Image:Syntax2.png]]
 
<br/>
 
  
The ''String'' will be an event name, a variable name, or a text fragment to be output to the screen. The concrete syntax is shown in bold red font. '*' indicates 0 or more; [] indicates 0 or 1.
+
* '''Identify ENAlter_Temperature_Sensor1 as a ProcedureDef event'''.
 +
** Right-click on the ''ENAlter_Temperature_Sensor1'' Event node.
 +
** Select ''New Child/Implementation'' from the menu.
 +
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''ProcedureDef''.
  
===== Event Translation =====
+
The final step is to complete the ''ENSense_Temperatures'' event. The event is a sensing event, sensing is a kind of synchronisation, it synchronises with the ''TCSense_Temperatures'' event. We add formal parameters annotations corresponding to the actual parameters that we have already defined in the task.
When an event, used in the task body, is translated to an implementation its translation depends on where it is used in the task body. The mappings are relatively simple for branch, loop, and sequence; but, in addition to the parent construct, the Event translation depends on whether it is part of a synchronization. Obviously the simplest translation is when no synchronization is involved. The translator checks the composed machine to see if the event is paired in a combined event. We say that events is a Tasking machine are local, and that events in a Shared or Environ machine, are remote. If there is no synchronization, then the actions of the local event are expanded in-line in the subroutine body.  
 
  
<span style="color: RED">'''Caution''': As a result of the decomposition process, the tool can produce a remote event, without a corresponding local event. A local event, with no guards and skip action, must be added manually to the tasking machine, and composed machine in order to facilitate code generation. This relates to an implementation with a subroutine call, where there are no parameters passed, and no local updates i.e. remote updates only. The addition of the 'dummy' event will be automated in a pre-processing step in the near future. It is not necessary to have a dummy remote event if a remote event does not exist.</span>
+
*'''Add The Sensed Event Extension'''.
 +
** Right-click on the ''ENSense_Temperatures'' Event node.
 +
** Select ''New Child/Implementation'' from the menu.
 +
** Go to the Implementation properties view and set the ''Implementation Type'' property to ''Sensing''.
  
See [[ Outstanding Tooling Issues]]
+
We have identified the event as a sensing event. Now we add the parameter direction:
  
===== Synchronization =====
+
*'''Identify parameter directions'''.
 +
** Right-click on the ''t1'' node.
 +
** Select''New Child/Parameter Type''.
 +
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''formalOut''.
 +
** Right-click on the ''t2'' node.
 +
** Select''New Child/Parameter Type''.
 +
** Go to the ''Parameter Type'' properties view and set the ''Parameter Type'' property to ''formalOut''.
  
Synchronization between local events (in AutoTasks) and remote events (in shared/Environ Machines) is determined using the composed machine. To use an event simply enter its name in the TaskBody editor. The translator will in-line any local actions, and add a call to perform remote updates, and obtain remote data.
+
We have now identified the parameters as an formalOut (modelling a simulation's subroutine call return value). This completes the necessary annotations for the simulation, and we can proceed to the translation step. In the event that memory mapped IO is required (non-simulation) then addresses can be added to the model at this stage, before translation takes place. See section on [http://wiki.event-b.org/index.php/Tasking_Event-B_Tutorial#Optional_Annotations_for_Addressed_Variables Addressed Variables] for details.
  
Synchronization corresponds to:
+
===== A Summary of Steps =====
* a subroutine call from task to shared machine, or,
+
If generating environment simulation code:
* sensing or actuating of environment variables.
+
# Ensure the Environ Machine is first machine in the development.
  
In the case of a subroutine call the subroutine is an atomic (with respect to an external viewer) update to state. The updates in the protected resource are implemented by a procedure call to a protected object, and tasks do not share state. The synchronization construct also provides the means to specify parameter passing, both in and out of the task.
+
For a Tasking Machine definition:
 +
# Add the Tasking Machine type (Auto etc).
 +
# Add the task type (Periodic etc.).
 +
# Define the task priority.
 +
# Define the task body.
 +
# For each event, add the Event Type.
 +
# For each event parameter, add the Parameter Type.
 +
# Optionally define addressed variables.
  
In the case of a sensing or actuating event, the updates of the action correspond to reads of monitored variables, and writes to controlled variables of the environment.
+
For a Shared Machine definition:
 +
# Add the ''SharedMachine'' Machine type.
 +
# For each event, define the Event Type.
 +
# For each event parameter, define the Parameter Type.
  
=== Implementing Events ===
+
For an Environ Machine definition:
An event's role in the implementation is identified by its parent in the task body. A description follows, in general terms, of the possible implementations of an event.
+
# Make the type an Auto Tasking Machine type.
 +
# Make the task type Periodic; a shorter period than the shortest task period is best for simulation.
 +
# Define the task priority.
 +
# Define the task body, it will contain a simulation of changes in the environment.
 +
# For each event, add the Event Type.
 +
# For each event parameter, add the Parameter Type.
 +
# Optionally define addressed variables.
  
<span style="color: BLUE">'''Note''': An event can be to referred only '''once''' in a task body specification. Of course, shared events (in Shared machines) can be re-used, but this is done through synchronization. The task body only refers to local events</span>
+
==== Invoking the Translation ====
  
* Event roles in implementation:
+
* To create the IL1 model,
** Branching: an event is split in the implementation; guards are mapped to branch conditions, and actions are mapped to the branch body. If the branch synchronizes with a Shared machine's event then this is mapped to a procedure call.
+
** Right-Click on the Main node, select ''Epsilon Translation/Translate Task Mch 2 IL1 EMF''.
** Looping: as in branching, the event is split; the guard maps to the loop condition, and actions to to loop body. If the event synchronizes with a Shared Machine event then it is mapped to a procedure call.  
+
** Open the Resource Perspective.
** Event: if the event is not contained in a branch or loop then it is one of the following:
+
** Right-click on the ''Heating_ControllerTutorial_Step2'' project folder.
*** A local-only event - the event only contains local updates, which are expanded to update actions in the implementation. In this case guards not permitted in the event.
+
** Select refresh, the ''.il1'' file should appear in the project.
*** A synchronizing event - local updates are expanded to become update actions in the implementation, remote updates are performed by subroutine call. Guards in the remote event may block; in Ada this is implemented as an entry barrier, and in C can be implemented using a pthread condition variable.
+
** Open and inspect the file, and view the source code by opening the IL1 Pretty Print view if desired.
** Sensing annotation - This annotation is added to an event in the EMF tree. It identifies an event as one that maps to a read, from the environment. If the environment is simulated, i.e. without address variables, then the sensing event has an update action that models assignment of a return value from a subroutine call. If the event has addressed variables associated with its event parameters, then they map to direct reads from memory mapped variables in the generated code.
 
** Actuating - This annotation is added to an event in the EMF tree. It identifies an event as one that maps to a write, to some variable in the environment. If the environment is simulated, without address variables, then the actuating event has no update action. If a sensing event has addressed variables associated with its parameters then they map to direct writes, to memory mapped variables in the generated code.  
 
  
Sensing (and actuating) events make use of synchronization. The sensing/actuating synchronizations only occur between AutoTasks and Environ machines. The data exchange, in sensing and actuating events, is modelled by the event parameters, and the result from the decomposition step. Shared machine events are mapped to subroutine declarations, and their parameters are always implemented as formal parameters. Formal parameters are place-holders in a subroutine; they are replaced by the actual parameters at run-time. To assist the code generator, we automatically identify the parameter direction during translation. We identify them as either ''in'' or ''out'' parameters.  
+
* To create the Event-B model of the implementation,
 +
** Return to the Rodin Modelling Perspective.
 +
** Right-Click on the Main node, select ''Epsilon Translation/Translate Task Mch 2 Event-B EMF''.
 +
** The ''Heating_Controller5AGen'' project is generated, it can be opened and inspected.
  
===== Addressed Variables =====
+
There may be errors in the generated machines (the issue will disappear in a future release); these can be fixed in the following way.
When sensing monitored variables, or actuating controlled variables, in the environment we can use explicit memory addresses. We can link a task's event parameters, and an Environ machines machine variables with specific addresses, we then implement these in such a way that we can read/write from these in the generated code. <span style="color: RED">Addressed variables are on the TODO list</span>, see [[ Outstanding Tooling Issues]]
+
* Open a Machine in the Event-B Machine Editor.
 +
* Select the Edit tab.
 +
* Open the REFINES section, the error lies here.
 +
* The correct machine is refined, but choose a different machine to refine (any one, it doesn't matter).
 +
* Select the original refined machine again.
 +
* Save and clean the project, and the error should disappear.
 +
* Repeat for the same errors in the other machines; save and clean again.
 +
* The machines can viewed as normal using the Rodin editors.
  
=== Theories, for Generating Code ===
+
=== Optional Annotations for Addressed Variables ===
  
See [http://wiki.event-b.org/index.php/The_Use_of_Theories_in_Code_Generation The Use of Theories in Code Generation]
+
Link To Addressed Variables!!!!!
  
=== State-Machines and Code Generation ===
+
To use memory mapped IO we can specify which addresses to use. The addresses are added to the event parameters of  a Tasking Machine's sensing and actuating events. The addresses may also be added to the Environ machine's machine variables, for use in simulation. It should be noted that the use of addressed variables, in simulation, has to be done cautiously to prevent memory errors. In the current release the translator generates code for all of these situations, and the environment task should be discarded if simulation is not required.
  
 +
We now add addressed variable to the ''TCSense_Temperatures'' event in ''Temp_Ctrl_Task1Impl'', a [http://wiki.event-b.org/images/AddressedVarsTask.pdf PrettyPrint] view is available. 
  
See [http://wiki.event-b.org/index.php/State-Machines_and_Code_Generation State-Machines and Code Generation]
+
*'''Add Address Information to the ''TCSense_Temperatures'' event'''.
 +
** Right-click on the ''t1'' parameter node.
 +
** Select''New Child/Addressed Variable''.
 +
** Go to the ''Addressed Variable'' properties view and set the ''Address'' property to ''ef14''.
 +
** Right-click on the ''t2'' node.
 +
** Select''New Child/Addressed Variable''.
 +
** Go to the ''Addressed Variable'' properties view and set the ''Address'' property to ''ef18''.
  
== References ==
+
Reads of the monitored variables of the sensing event can therefore be made directly from the address specified. Their is also a ''base'' property which can be set to indicate the base of the property value. The default value is 16. The environment simulation may also make use of addressed variables, but in this case the extension is made to the Environ Machine [http://wiki.event-b.org/images/AddressedVarsEnviron.pdf machine variables].
  
<references/>
+
Invocation of the translators proceeds as detailed above.
  
 +
  
 
[[Category:User documentation]]
 
[[Category:User documentation]]

Revision as of 14:50, 3 May 2011

THIS PAGE IS UNDER CONSTRUCTION !!!!!!

For more information contact Andy Edmunds - University of Southampton - mailto:ae2@ecs.soton.ac.uk

Tasking Event-B Tutorial Overview

This code generation tutorial supplements the Heating Controller tutorial example, and makes use of example projects from the download site. The code generation stage produces implementable Ada code, and also an Event-B project which models the implementation. The Ada code is produced using a pretty printer tool from an intermediate model, the Common Language model (IL1), generated by a translation tool. An overview of Tasking Event-B can be found on the Tasking_Event-B_Overview page.

The Heating Controller development has been refined to the point where we wish to add implementation constructs. The Event-B language is not expressive enough to fully describe the implementation. Tasking Event-B facilitates this final step to implementation, by extending Event-B with the necessary constructs. Event-B machines that are to be implemented (and their seen Contexts) are selected and added to a Tasking Development; the Tasking Development files have the file extension .tasking. The machines in the Tasking Development are then extended with implementation details.

The example/tutorial projects are,

Heating_ControllerTutorial_Completed An example project with a completed Tasking Development and IL1 model (post IL1 translation, but before Event-B translation).
Heating_ControllerTutorial_Completed_Gen Same as the example project above, but with Event-B model translations. The difference being that this development includes a model of the implementation. These are refinements that include a program counter to describe flow of execution in each task.
Heating_ControllerTutorial_Step1 A bare project for step 1 of the tutorial.
Heating_ControllerTutorial_Step2 A partially completed tasking development for steps 2, 3 and 4 of the tutorial.

Preliminaries

Before further discussion of the modelling aspects, we take a look at the PrettyPrint viewers. The PrettyPrinters make the viewing of IL1 and tasking models easier; it also provides a route to generate source code. The source code can easily be pasted from the IL1 Pretty Printer window into an the Ada source file .

The PrettyPrint View of a Tasking Development

To open the Tasking PrettyPrint viewer,

  • from the top-menu select Window/Show View/Other/Tasking Pretty Printer.

Note that the Tasking PrettyPrinter may have to be closed when editing the Tasking Development, since it can give rise to exceptions. The PrettyPrinter would need further work to make it robust, however it is intended only as a short-term solution.

  • Open the Heating_ControllerTutorial_Completed Project and switch to the Resource Perspective.
  • Open the .tasking model and inspect it. Clicking on the Main, Machine or Event nodes updates the pretty print window.

Viewing Source Code

aka. The PrettyPrint View of an IL1 Model.

To view Ada source code,

  • from the top-menu select Window/Show View/Other/IL1 Pretty Printer.
  • Open the Heating_ControllerTutorial_Completed Project and switch to the Resource Perspective.
  • Open the .il1 model and inspect it. Clicking on the Protected, Main Entry, or Task nodes updates the pretty print window.

Cleaning the Tasking Development

If the .tasking file has errors, then it may need cleaning. To do this right-click on the Main node, select Epsilon Translation/CleanUp. If a model has errors it can still be viewed by clicking on the Selection tab at the bottom of the tasking editor window.

Using the Tasking Extension

The steps needed to generate code from an Event-B model, in this tutorial, are as follows,

Creating The Tasking Development

  • Change to the Event-B Perspective.
  • Open the Heating_ControllerTutorial_Step1 Project.
  • Select the following Machines: Display_Update_Task1, Envir1, Heater_Monitor_Task1, Shared_Object1, Temp_Ctrl_Task1 and HC_CONTEXT.
  • Right-click and select Make Tasking Development/Generate Tasking Development.

The new Tasking Development will not be visible in the Event-B perspective, change to the resource perspective, open and inspect the new .tasking file. The Tasking Development contains (the EMF representation of) the machines that we wish to provide implementations for. In order to introduce the new concepts we have prepared a partially complete development.

  • Change the tasking development, if necessary, so that the machine that models the environment is at the top of the tree of machines.

In the simulation implementation, elements of the Environ machine must be declared first.

Change to the Project Heating_ControllerTutorial_Step2 to begin the next step.

Providing the Annotations for Implementations

  • Close any Tasking Pretty Print Viewers that remain open. The incomplete model will give rise to exceptions.
  • Go to the to the Resource Perspective.
  • Open and inspect the .tasking machine.

The Temp_Ctrl_Task1Impl, Envir1 and Shared_Object1 machines are incomplete. We will take the necessary steps to provide implementation details.

The Temp_Ctrl_Task1Impl Machine

In the partially complete tutorial project we have already identified the Temp_Ctrl_Task1Impl as an Auto Task Tasking Machine, by adding the Auto Task extension. Auto Tasks are tasks that will be declared and defined in the Main procedure of the implementation. The effect of this is that the Auto Tasks are created when the program first loads, and then activated (made ready to run) before the Main procedure body runs. We have added the Periodic Task extension to the Auto Task, and set a period of 250 milliseconds. We have provided a PrettyPrint view of the completed Temp_Ctrl_Task1Impl that can be read in conjunction with the tutorial.

We will now complete the sequence that has been partially defined in the task body.

  • Add Sensing between TCSense_Temperatures and ENSense_Temperatures.
    • Expand the Temp_Ctrl_Task1Impl Auto Task Machine node.
    • Expand the Seq sub-tree.
    • Right-click on the Seq node and select New Child/Left Branch EventWrapper.
    • Provide the event label tc1 using the properties view.
    • Right-click on Event Wrapper and select New Child/ Synch Events.
    • Select Synch Events and go to the drop-down menu of the Local Event property.
    • At this point the drop-down box displays a number of event names, select the second TCSense_Temperatures event.
    • Go to the drop-down menu of the Remote Event property.
    • From the list of events select the first ENSense_Temperatures event.

By relating the sensing events in this way we describe a simulation of the interaction between the task and environment. The details of the interaction are embodied in the events themselves. This is implemented in the simulation code as a write to environment variables using a subroutine call.

Note that the Synch Events construct is used in several ways. We use it to implement Event Synchronisation; sensing and actuation; and as a simple event wrapper. An example of its use in a simple event wrapper follows. The simple event wrapper is used to update local state; there is no synchronisation, as such, but we re-use the constructs that already exist rather than create new ones. We now add a wrapped event to the sequence:

  • Add the Wrapped Event TCCalculate_Average_Temperature.
    • Expand the sub-tree of the second Seq node.
    • Right-click on the Seq node and select New Child/Left Branch EventWrapper.
    • Provide the event label tc2 using the properties view.
    • Right-click on Event Wrapper and select New Child/ Synch Events.
    • Select Synch Events and go to the drop-down menu of the Local Event property.
    • From the list of events select the TCCalculate_Average_Temperature event.

The addition of the wrapped event, to the sequence, is simply specification of event ordering. It is implemented in code as a sequential subroutine call statement. We now specify event synchronisation between the task and shared object:

  • Add Synchronisation between TCGet_Target_Temperature2 and SOGet_Target_Temperature2.
    • Further expand the Seq sub-tree until Eventwrapper tc3 appears.
    • Right-click on the sibling Seq node (lowest in the tree) and select New Child/Left Branch EventWrapper.
    • Provide the event label tc4 using the properties view.
    • Right-click on Event Wrapper and select New Child/ Synch Events.
    • Select Synch Events and go to the drop-down menu of the Local Event property.
    • At this point the drop-down box displays a number of event names, select the second TCGet_Target_Temperature2 event.
    • Go to the drop-down menu of the Remote Event property.
    • From the list of events select the second SOGet_Target_Temperature2 event.

We have now completed the task body, and next provide additional details for events. In the first instance we focus on the the TCGet_Target_Temperature2 event in Temp_Ctrl_Task1Impl which is to be synchronized with the SOGet_Target_Temperature2 event in Shared_Object1Impl.

  • Add The Event Synchronisation Extension.
    • Right-click on the TCGet_Target_Temperature2 Event node.
    • Select New Child/Implementation from the menu.
    • Go to the Implementation properties view and set the Implementation Type property to ProcedureSynch.

We have identified the event as one that partakes in a synchronisation.

  • Identify a parameter direction.
    • Right-click on the tm node.
    • SelectNew Child/Parameter Type.
    • Go to the Parameter Type properties view and set the Parameter Type property to actualIn.

We have now identified the parameter as an actualIn (this models a call's return value).

Next we look at the sensing event TCSense_Temperatures event in Temp_Ctrl_Task1Impl. Sensing (and actuating) can be viewed as a kind of synchronisation. The simulation code has a subroutine corresponding to the ENSense_Temperatures event in the Environ machine Envir1Impl:

  • Add The Sensed Event Extension.
    • Right-click on the TCSense_Temperatures Event node.
    • Select New Child/Implementation from the menu.
    • Go to the Implementation properties view and set the Implementation Type property to Sensing.

We have identified the event as a sensing event. Now we add the parameter direction:

  • Identify parameter directions.
    • Right-click on the t1 node.
    • SelectNew Child/Parameter Type.
    • Go to the Parameter Type properties view and set the Parameter Type property to actualIn.
    • Right-click on the t2 node.
    • SelectNew Child/Parameter Type.
    • Go to the Parameter Type properties view and set the Parameter Type property to actualIn.

We have now identified the parameters as an actualIn (modelling a simulation's subroutine call return value).

The Shared Machine

The next step is to identify the Shared_Object1Impl machine as a Shared Machine. A PrettyPrint view of the Shared_Object1Impl shared machine can be read in conjunction with the text. The Shared_Object1Impl Machine will be extended using the Event-B extension mechanism.

  • Right-click on the Shared_Object Machine node in the .tasking file.
  • Select New Child/Shared Machine from the menu.

We now show how to extend the SOGet_Target_Temperature2 event of the Shared Machine with details about its implementation. The SOGet_Target_Temperature2 event in Shared_Object1Impl synchronizes with the TCGet_Target_Temperature2 event in the Temp_Ctrl_Task1Impl.

  • Identify SOGet_Target_Temperature2 as a Synchronized event.
    • Right-click on the SOGet_Target_Temperature2 Event node.
    • Select New Child/Implementation from the menu.
    • Go to the Implementation properties view and set the Implementation Type property to ProcedureSynch.
  • Identify the outgoing (return) parameter.
    • Right-click on the tm node.
    • Select New Child/Parameter Type.
    • Go to the Parameter Type properties view and set the Parameter Type property to formalOut.
The Environ Machine

In the prepared machine we have identified the Envir1Impl as an Environ Machine, by adding the Environ Machine extension. Envir1Impl models a task that simulates the environment, and can be used to generate simulation code. For deployment in a non-simulated environment the environ machine's generated code can be ignored; we provide details of non-simulated code using addressed variables later. As before, a PrettyPrint view is available. We have added the Periodic Task extension to the Auto Task, and set a period of 100 milliseconds.

We will now complete the sequence that has been partially defined in the task body. The following specification models simulation of a temperature change; the temperature value is represented by a monitored variable in the environment. The generated code simulates the temperature change in the environment by changing the monitored value.

  • Model Temperature Change in the environment.
    • Expand the Environ1Impl Environ Machine node.
    • Expand the Seq sub-tree fully.
    • Right-click on the last Seq node in the tree and and select New Child/Left Branch EventWrapper.
    • Provide the event label e4 using the properties view.
    • Right-click on Event Wrapper and select New Child/ Synch Events.
    • Select Synch Events and go to the drop-down menu of the Local Event property.
    • At this point the drop-down box displays a number of event names, select the first ENAlter_Temperature_Sensor1 event.

Output to the screen during the simulation can be specified as follows:

  • Text Output during Simulation..
    • Right-click on the last Seq node in the tree and and select New Child/Right Branch Output.
    • Select the Output node, and in the properties menu select the Element property drop down box.
    • Select the last variable ctd that appears in the list.
    • In the Text property field, add a textual description to accompany the text output.

The generated code will print the text, and the value of the variable, to the screen. The next step is to identify the ENAlter_Temperature_Sensor1 as a ProcedureDef.

  • Identify ENAlter_Temperature_Sensor1 as a ProcedureDef event.
    • Right-click on the ENAlter_Temperature_Sensor1 Event node.
    • Select New Child/Implementation from the menu.
    • Go to the Implementation properties view and set the Implementation Type property to ProcedureDef.

The final step is to complete the ENSense_Temperatures event. The event is a sensing event, sensing is a kind of synchronisation, it synchronises with the TCSense_Temperatures event. We add formal parameters annotations corresponding to the actual parameters that we have already defined in the task.

  • Add The Sensed Event Extension.
    • Right-click on the ENSense_Temperatures Event node.
    • Select New Child/Implementation from the menu.
    • Go to the Implementation properties view and set the Implementation Type property to Sensing.

We have identified the event as a sensing event. Now we add the parameter direction:

  • Identify parameter directions.
    • Right-click on the t1 node.
    • SelectNew Child/Parameter Type.
    • Go to the Parameter Type properties view and set the Parameter Type property to formalOut.
    • Right-click on the t2 node.
    • SelectNew Child/Parameter Type.
    • Go to the Parameter Type properties view and set the Parameter Type property to formalOut.

We have now identified the parameters as an formalOut (modelling a simulation's subroutine call return value). This completes the necessary annotations for the simulation, and we can proceed to the translation step. In the event that memory mapped IO is required (non-simulation) then addresses can be added to the model at this stage, before translation takes place. See section on Addressed Variables for details.

A Summary of Steps

If generating environment simulation code:

  1. Ensure the Environ Machine is first machine in the development.

For a Tasking Machine definition:

  1. Add the Tasking Machine type (Auto etc).
  2. Add the task type (Periodic etc.).
  3. Define the task priority.
  4. Define the task body.
  5. For each event, add the Event Type.
  6. For each event parameter, add the Parameter Type.
  7. Optionally define addressed variables.

For a Shared Machine definition:

  1. Add the SharedMachine Machine type.
  2. For each event, define the Event Type.
  3. For each event parameter, define the Parameter Type.

For an Environ Machine definition:

  1. Make the type an Auto Tasking Machine type.
  2. Make the task type Periodic; a shorter period than the shortest task period is best for simulation.
  3. Define the task priority.
  4. Define the task body, it will contain a simulation of changes in the environment.
  5. For each event, add the Event Type.
  6. For each event parameter, add the Parameter Type.
  7. Optionally define addressed variables.

Invoking the Translation

  • To create the IL1 model,
    • Right-Click on the Main node, select Epsilon Translation/Translate Task Mch 2 IL1 EMF.
    • Open the Resource Perspective.
    • Right-click on the Heating_ControllerTutorial_Step2 project folder.
    • Select refresh, the .il1 file should appear in the project.
    • Open and inspect the file, and view the source code by opening the IL1 Pretty Print view if desired.
  • To create the Event-B model of the implementation,
    • Return to the Rodin Modelling Perspective.
    • Right-Click on the Main node, select Epsilon Translation/Translate Task Mch 2 Event-B EMF.
    • The Heating_Controller5AGen project is generated, it can be opened and inspected.

There may be errors in the generated machines (the issue will disappear in a future release); these can be fixed in the following way.

  • Open a Machine in the Event-B Machine Editor.
  • Select the Edit tab.
  • Open the REFINES section, the error lies here.
  • The correct machine is refined, but choose a different machine to refine (any one, it doesn't matter).
  • Select the original refined machine again.
  • Save and clean the project, and the error should disappear.
  • Repeat for the same errors in the other machines; save and clean again.
  • The machines can viewed as normal using the Rodin editors.

Optional Annotations for Addressed Variables

Link To Addressed Variables!!!!!

To use memory mapped IO we can specify which addresses to use. The addresses are added to the event parameters of a Tasking Machine's sensing and actuating events. The addresses may also be added to the Environ machine's machine variables, for use in simulation. It should be noted that the use of addressed variables, in simulation, has to be done cautiously to prevent memory errors. In the current release the translator generates code for all of these situations, and the environment task should be discarded if simulation is not required.

We now add addressed variable to the TCSense_Temperatures event in Temp_Ctrl_Task1Impl, a PrettyPrint view is available.

  • Add Address Information to the TCSense_Temperatures event.
    • Right-click on the t1 parameter node.
    • SelectNew Child/Addressed Variable.
    • Go to the Addressed Variable properties view and set the Address property to ef14.
    • Right-click on the t2 node.
    • SelectNew Child/Addressed Variable.
    • Go to the Addressed Variable properties view and set the Address property to ef18.

Reads of the monitored variables of the sensing event can therefore be made directly from the address specified. Their is also a base property which can be set to indicate the base of the property value. The default value is 16. The environment simulation may also make use of addressed variables, but in this case the extension is made to the Environ Machine machine variables.

Invocation of the translators proceeds as detailed above.